Skip to main content

Formation and Consumption of Methane

  • Conference paper
  • 332 Accesses

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

Laboratory and field studies of methanogenesis and methylotrophy are clearly at very different stages of development, yet information from both laboratory and field studies is needed to understand the global methane budget to the point of making predictions of the possible decrease or increase in methane emissions to the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann, I., P.J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem., 8: 307–358.

    Article  CAS  Google Scholar 

  • Beddard, C., R. Knowles. 1989. Physiology, biochemistry and specific inhibitors of CH4, NH4+ and CO oxidation by methylotrophs and nitrifiers. Microbiol. Rev., 53: 68–84.

    Google Scholar 

  • Born, M., H. Dörr, I. Levin. 1990. Methane consumption in aerated soils of the temperate zone. Tellus, 42B: 2–8.

    Article  Google Scholar 

  • Chanton, J.P., J.W.H. Dacey. 1991. Effects of vegetation on methane flux. In: Gas Emissions from Plants ( H. Mooney, E. Holland, and T. Sharkey, eds.), Academic Press, San Diego, p. 65.

    Google Scholar 

  • Conrad, R. 1984. Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases. In: Current Perspectives in Microbial Ecology ( M.J. Klug and C.A. Reddy, eds.), American Society for Microbiology, Washington, p. 461.

    Google Scholar 

  • Crill, P.M. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem. Cyc., 5: 319–334.

    Article  CAS  Google Scholar 

  • Crill, P.M., K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Madzar, W. Sanner. 1988. Methane flux from Minnesota peatlands. Global Biogeochem. Cyc., 2: 371–384.

    Article  CAS  Google Scholar 

  • Dörr, H., K.O. Munnich. 1990. 222Rn flux and soil air concentration profiles in West Germany: soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellus, 42B: 20–28.

    Article  Google Scholar 

  • Dörr, H., L. Katruff, I. Levin. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 26 (1–4): 697–714.

    Article  Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96: 13033–13065.

    Article  CAS  Google Scholar 

  • Hogan, K.B., J.S. Hoffman, A.M. Thompson. 1991. Methane on the greenhouse agenda. Nature, 354:181–182.

    Article  Google Scholar 

  • Keller, M., M.E. Mitre, R.F. Stallard. 1990. Consumption of atmospheric methane in soils of central Panama. Global Biogeochem. Cyc., 4: 21–47.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, J.R. French, J. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons. J. Geophys. Res., 95: 3619–3634.

    Article  Google Scholar 

  • King, G.M. 1990. Regulation by light of methane emissions from a wetland. Nature, 345: 513–515.

    Article  CAS  Google Scholar 

  • Lelieveld, J., P.J. Crutzen. 1992. Indirect effects of methane on climate warming. Nature, 355: 339–342.

    Article  CAS  Google Scholar 

  • Matthews, E., I. Fung. 1987. Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cyc., 1: 61–86.

    Article  CAS  Google Scholar 

  • Moore, T.R., R. Knowles. 1989. The influence of water table levels on methane and carbon dioxide emissions from peatland soil. Can. J. Soil Sci., 69: 33–38.

    Article  CAS  Google Scholar 

  • Moore, T.R., N.T. Roulet, R. Knowles. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem. Cyc., 4: 29–46.

    Article  CAS  Google Scholar 

  • Moore, T.R., A. Heyes, N.T. Roulet. 1993. Methane emissions from wetlands, southern Hudson Bay Lowland. J. Geophys. Res. in press.

    Google Scholar 

  • Mosier, A.R., D. Schimel, D. Valentine, K. Bronson, W. Paton. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350: 330–332.

    Article  CAS  Google Scholar 

  • Reeburgh, W.S., S.C. Whalen, M.J. Alperin. 1993. The role of microbiallymediated oxidation in the global CH4 budget. In: Microbiology of C I Compounds ( J.C. Murrell and D.P. Kelly, eds.), Intercept, Andover, U.K., pp. 1–14.

    Google Scholar 

  • Roulet, N.T., T.R. Moore, P. Lafleur, J. Bubier. 1992a. Northern fens, atmospheric methane, and climate change. Tellus, 44B: 100–105.

    Google Scholar 

  • Roulet, N.T., R. Ash, T.R. Moore. 1992b. Low boreal wetlands as a source of atmospheric methane. J. Geophys. Res., 97: 3739–3749.

    CAS  Google Scholar 

  • Sass, R.L., F.M. Fisher, P.A. Harcombe, F.T. Turner. 1990. Methane production and emissions in a Texas rice field. Global Biogeochem. Cyc., 4: 47–68.

    Article  CAS  Google Scholar 

  • Schütz, H., W. Seiler, R. Conrad. 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochem., 7: 33–53.

    Article  Google Scholar 

  • Schütz, H., P. Schroder, H. Renenburg. 1991. Role of plants in regulating the methane flux to the atmosphere. In: Gas Emissions from Plants ( H. Mooney, E. Holland, and T. Sharkey, eds.), Academic Press, San Diego, p. 29.

    Google Scholar 

  • Steudler, P.A., D.M. Bowden, G.E. Lang, J.D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341: 314–316.

    Article  Google Scholar 

  • Striegl, R.G. 1993. Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere, 26 (14): 715–720.

    Article  CAS  Google Scholar 

  • Topp, E., R.S. Hanson. 1991. Metabolism of radiatively important trace gases by methane-oxidizing bacteria. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes ( J.E. Rogers and W.E. Whitman, eds.), American Society of Microbiology, Washington, p 71.

    Google Scholar 

  • Tsien, H.C., B.J. Bratina, K. Tsuji, R.S. Hanson. 1990. Use of olignucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol., 56: 2858–2865.

    PubMed  CAS  Google Scholar 

  • Tsuji, K., H.C. Tsien, S.R. DePalma, R. Scholtz, S. LaRoche. 1991. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationships among methylotrophs. J. Gen. Microbiol., 13: 1–10.

    Google Scholar 

  • Valentine, D.W., E.A. Holland, D.S. Schimel. 1993. Methane production in northern wetlands: ecosystem and physiological controls. J. Geophys. Res. in press.

    Google Scholar 

  • Watson, R.T., H. Rohde, H. Oeschger, U. Sigenthaler. 1990. Greenhouse gases and aerosols. In: Climate Change: The IPCC Scientific Assessment ( J.T. Houghton, G.J. Jenkins, and J.J. Ephraums, eds.), Cambridge University Press, Cambridge, p. 1.

    Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1990. Consumption of atmospheric methane by tundra soils. Nature, 346:160–162.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1992. Interannual variations in tundra methane flux: a 4 year time series at fixed sites. Global Biogeochem. Cyc., 6: 139–159.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh, K.A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol., 56: 3405–3411.

    PubMed  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh, K.S. Kizer. 1991. Methane consumption and emission from taiga soils. Global Biogeochem. Cyc., 5: 261–274.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh, V. Barber. 1992. Oxidation of methane by boreal forest soils: a comparison of seven measures. Biogeochem., 16: 181–211.

    Article  CAS  Google Scholar 

  • Yavitt, J.B., G.E. Lang, D.M. Downey. 1988. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United Sates. Global Biogeochem. Cyc., 2: 253–268.

    Article  CAS  Google Scholar 

  • Yavitt, J.B., D.M. Downey, G.E. Lang, A.J. Sextone. 1990. Methane consumption in two temperate forest soils. Biogeochem., 9: 39–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roulet, N.T., Reeburgh, W.S. (1993). Formation and Consumption of Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics