Advertisement

Rice Agriculture: Factors Controlling Emissions

Conference paper
Part of the NATO ASI Series book series (volume 13)

Abstract

Recent atmospheric measurements indicate that concentrations of greenhouse gases are increasing. Atmospheric methane concentration has increased at about 1% annually to 1.7 ppmV during the last decades (Khalil and Rasmussen, 1987). The resulting effect on global temperature is highly significant because the warming efficiency of methane is up to 30 times that of carbon dioxide (Dickinson and Cicerone, 1986). Data from polar ice cores indicate that tropospheric methane concentrations have increased by a factor of 2–3 over the past 200–300 years (Khalil and Rasmussen, 1989). The increase of methane concentrations in the troposphere correlate closely with global population growth and increased rice production (Figure 1), suggesting a strong link to anthropogenic activities. The total annual global emission of methane is estimated to be 420–620 Tg/yr (Khalil and Rasmussen, 1990), 70–80% of which is of biogenic origin (Bouwman, 1990). Methane emissions from wetland rice agriculture have been estimated up to 170 Tg/yr, which account for approximately 26% of the global anthropogenic methane budget. Flooded ricefields are probably the largest agricultural source of methane, followed by ruminant enteric digestion, biomass burning, and animal wastes (summarized by Bouwman, 1990).

Keywords

Rice Straw Methane Production Methane Emission Paddy Soil International Rice Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abram, J.W., D.B. Nedwell. 1978. Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. Arch. Microbiol., 117: 89–92.PubMedGoogle Scholar
  2. Acharya, C.N. 1935. Studies on the anaerobic decomposition of plant materials. II. Some factors influencing the anaerobic decomposition. Biochem. J., 29: 953–960.PubMedGoogle Scholar
  3. Alperin, M.J., W.S. Reeburgh. 1984. Geochemical observations supporting anaerobic methane oxidation. In: Microbial Growth on C-1 Compounds ( R.L. Crawford and R.S. Hanson, eds.), American Society of Microbiology, Washington D.C. p. 282–289.Google Scholar
  4. Anthony, C. 1982. The Biochemistry of Methylotrophs. Academic Press, San Diego California.Google Scholar
  5. Aselmann, I., Crutzen, P.J. 1990. Global inventory of wetland distribution and seasonality net primary production and estimated methane emission. In: Soils and the Greenhouse Effect ( A.F. Bouwman, ed.), John Wiley & Sons, Chichester, England, p 441–450.Google Scholar
  6. Bachelet, D., H.U. Neue. 1993. Methane emissions from wetland rice areas of Asia. Chemosphere, 26 (1–4): 219–246.Google Scholar
  7. Balderston, W.L., W.J. Payne. 1976. Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl. Environ. Microbiol., 32: 264–269.PubMedGoogle Scholar
  8. Bartlett, K.B., D.S. Bartlett, R.C. Harriss, D.I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4: 183–202.Google Scholar
  9. Belay, N.R., R. Sparling, L. Daniels. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature, 312: 286–288.PubMedGoogle Scholar
  10. Biavati, B., M. Vasta, J.G. Ferry. 1988. Isolation and characterization of Methanosphaera cuniculi sp.nov. Appl. Environ. Microbiol., 54: 786–771.Google Scholar
  11. Blotevogel, K.H., U. Fischer, M. Mocha, S. Jannsen. 1985. Methanobacterium thermoalcapiphilum sp. nov. a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol., 142: 211–217.Google Scholar
  12. Bolle, H.J., W. Seiler, B. Bolin. 1986. Other greenhouse gases and aerosols, assessing their role for atmospheric radiative transfer. In: The Greenhouse Effect, Climatic Change, and Ecosystems ( B. Bolin, B.R. Döös, J. Jäger, and R.A. Warrick, eds.), Chichester, New York, Brisbane, Toronto, Singapore, Wiley and Sons; p 157–203.Google Scholar
  13. Bonneau, M. 1982. Soil temperature. In: Constituents and Properties of Soils ( M. Bonneau and B. Souchier, eds.), Academic Press, London, England, p 366–371.Google Scholar
  14. Bont, J.A.M. de, K.K. Lee, D.F. Bouldin. 1978. Bacterial oxidation of methane in rice paddy. Ecol. Bull., 26: 91–96.Google Scholar
  15. Borrell, A.K., S. Fukai, A.L. Garside. 1991. Irrigation methods for rice in tropical Australia. Int. Rice Res. Newsl., 16 (3): 28.Google Scholar
  16. Bouwman, A.F. 1990. Soils and the Greenhouse Effect. (A.F. Bouwman, ed.), John Wiley.Google Scholar
  17. Bronson, K.F., A.R. Mosier. 1991. Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane and carbon dioxide emissions in flooded rice. Biology and Fertility of Soils, 3: 116–120.Google Scholar
  18. Buresh, R.J., S.K. De Datta. 1991. Nitrogen dynamics and management in rice-legume cropping systems. Adv. Agron., 45: 1–59.Google Scholar
  19. Capistrano, R.F. 1988. Decomposition of 14C-labelled rice straw in 3 submerged soils under controlled laboratory conditions. M.S. thesis, University of the Philippines at Los Banos Laguna, Philippines.Google Scholar
  20. Cappenberg, T.E. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observation. Anton. Leeuwenhoek J. Microbiol. Serol., 40: 285–295.Google Scholar
  21. Cappenberg, T.E., R.A. Prins. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labelled substrates. Anton. Leeuwenhoek J. Microbiol. Serol., 40: 457–469.Google Scholar
  22. Cho, D.Y., F.N. Ponnamperuma. 1971. Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Sci., 112: 184–194.Google Scholar
  23. Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.Google Scholar
  24. 290.
    Conrad, R. 1989. Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), S. Bernhard Dahlem Konferenzen. Wiley, New York, p 39–58.Google Scholar
  25. Conrad, R., R. Bonjour, M. Aragno. 1985. Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water. FEMS Microbiol. Lett., 29: 201–206.Google Scholar
  26. Conrad, R., H.P. Mayer, M. Wüst. 1989. Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial association in anoxic paddy soil. FEMS Microbiol. Ecol., 62: 265–274.Google Scholar
  27. Crawford, R.L., R.S. Hanson (eds.) 1984. Microbial growth on Cl compounds. Proceedings of the 4th International Symposium American Society for Microbiology, Washington D.C.Google Scholar
  28. De Datta, S.K. 1981. Principles and Practices of Rice Production. John Wiley and Sons New York USA.Google Scholar
  29. De Datta, S.K. 1987. Advances in soil fertility research and nitrogen fertilizer management for lowland rice. In: Efficiency of Nitrogen Fertilizer for Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 27–41.Google Scholar
  30. De Datta, S.K., W.H. Patrick (eds.). 1986. Nitrogen economy of flooded rice soils. Development in Plant and Soil Sciences. Martin Nijhoff Publication, Dodrecht, The Netherlands.Google Scholar
  31. De Laune, R.D., E.J. Smith, W.H. Patrick. 1983. Methane release from Gulf Coast wetlands. Tellus, 35B:8–15.Google Scholar
  32. Dent, D. 1986. Acid sulfate soils: a baseline for research and development. ILRI Publication 39. Wageningen, The Netherlands.Google Scholar
  33. Dickinson, R.E., R.J. Cicerone. 1986. Future global warming from atmospheric trace gases. Nature, 319:109–115.Google Scholar
  34. Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms (A.J.B. Zehnder, ed.) Wiley, New York, p 417–468.Google Scholar
  35. FAO — Food and Agriculture Organization. 1988. Quarterly Bulletin of Statistics. Vol. 1 No. 4. FAO, Rome, Italy.Google Scholar
  36. Fillery, I.R.P., P.L.G. Vlek. 1986. Reappraisal of the significance of ammonia volatilization as a N loss mechanism in flooded ricefields. In: Development in Plant and Soil Sciences ( S.K. De Datta and W.H. Patrick, eds.), Martin Nijhoff Publ., Dodrecht, The Netherlands, p. 79–98.Google Scholar
  37. Franklin, N.J., W.J. Wiebe, W.B. Whitman. 1988. Populations of methanogenic bacteria in Georgia salt marsh. Appl. Environ. Microbiol., 54: 1, 151–1, 157.Google Scholar
  38. Garcia, J.L. 1990. Taxonomy and ecology of methanogens. FEMS Microbiol. Rev., 87: 297–308.Google Scholar
  39. Garcia, J.L., M. Raimbault, V. Jacq, G. Rinaudo, P. Roger. 1974. Activities microbiennes dans les sols de rizieres du senegal: relations avec les proprietes physicochimiques et influence de la rhizosphere. Rev. Ecol. Biol., 11 (2): 169–185.Google Scholar
  40. Greenland, D.J. 1985. Physical aspects of soil management for rice-based cropping systems. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 1–16.Google Scholar
  41. Gupta, G.P. 1974. The influence of temperature on the chemical kinetics of submerged soils. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.Google Scholar
  42. Hackman, Ch.W. 1979. Rice field ecology in Northeastern Thailand. The effect of wet and dry season on a cultivated aquatic ecosystem. In: Monogr. Biol., 34 (J. Illies, ed.), W. Junk Publisher, 22 p.Google Scholar
  43. Harrison, W.H., P.A.S. Aiyer. 1913. The gases of swamp rice soil. I. Their composition and relationship to the crop. Memoires, Department of Agriculture, India. Chem. Ser., 5 (3): 65–104.Google Scholar
  44. Higgins, I.J., D.J. Best, R.C. Hammond, D.C. Scott. 1981. Methane-oxidizing microorganisms. Microbiol. Rev., 45: 556–590.PubMedGoogle Scholar
  45. Holzapfel-Pschorn, A., W. Seiler. 1986. Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res., 91: 11, 803–11, 814.Google Scholar
  46. Holzapfel-Pschorn, A., R. Conrad, W.W. Seiler. 1985. Production oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol., 31: 343–351.Google Scholar
  47. Holzapfel-Pschorn, A., R. Conrad R, W. Seiler. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil, 92: 223–233.Google Scholar
  48. Honya, K. 1966. Fundamental conditions for high yields of rice. [in Japanese]. Nobunkyo Publishing, Tokyo.Google Scholar
  49. IRRI - International Rice Research Institute. 1964. Annual report for 1963. P.O. Box 933, Manila, Philippines, 201 p.Google Scholar
  50. IRRI - International Rice Research Institute. 1981. Annual report for 1980. P.O. Box 933, Manila, Philippines, 306 p.Google Scholar
  51. IRRI - International Rice Research Institute. 1989. IRRI toward 2000 and beyond. P. O. Box 933, Manila, Philippines.Google Scholar
  52. IRRI - International Rice Research Institute. 1991. World rice statistics 1990. P. O. Box 933, Manila, Philippines.Google Scholar
  53. Iversen, N., R.S. Oremland, M.J. Klug. 1987. Big Soda Lake (Nevada) 3 pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr., 32: 804–814.Google Scholar
  54. Iwata, S., S. Hasegawa, K. Adachi. 1986. Water flow balance and control in rice cultivation. In: Wetlands and Rice in Subsaharan Africa (A.S.R. Juo and J.A. Lowe, eds. ), IITA Ibadan Nigeria, p. 69–86.Google Scholar
  55. Kanazawa, N. 1984. Trends and economic factors affecting organic manures in Japan. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila Philippines, p 557–568.Google Scholar
  56. Katyal, J.C. 1977. Influence of organic matter on chemical and electrochemical properties of some flooded soils. Soil Biol., 9: 259–266.Google Scholar
  57. Kawaguchi, K., K. Kyuma. 1977. Paddy Soils in Tropical Asia: Their Material Nature and Fertility. The University Press of Hawaii, Honolulu, Hawaii, USA.Google Scholar
  58. Khalil, M.A.K., R.A. Rasmussen. 1987. Atmospheric methane: trends over the last 10000 years. Atmos. Environ., 21 (11):2, 445–2, 452.Google Scholar
  59. Khalil, M.A.K., R.A. Rasmussen. 1989. Climate induced feedback for the global cycles of methane and nitrous oxide. Tellus, 41B: 554–559.Google Scholar
  60. Khalil, M.A.K., R.A. Rasmussen. 1990. Constraints on the global sources of methane and an analyses of recent budgets. Tellus, 428: 229–236.Google Scholar
  61. Kiene, R.P., P.T. Visscher. 1987. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic marine sediments. Appl. Environ. Microbiol., 53: 2, 426–2, 434.Google Scholar
  62. King, G.M. 1984. Metabolism of trimethylamine choline and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl. Environ. Microbiol., 48: 719–725.PubMedGoogle Scholar
  63. King, G.M. 1988. Methanogenesis from methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol., 54: 130–136.PubMedGoogle Scholar
  64. Kondo, Y. 1952. Physiological studies on cool-weather resistance of rice varieties. Nogyo Gijutsi Kenkyusho Hokodu Di seiri Inde. Sakrimotsu Ippan (National Institute of Agriculture Science Bulletin Japan Series) D 3: 113–228.Google Scholar
  65. Koyama, T., M. Hishida, T. Tomino. 1970. Influence of sea salts on the soil metabolism. II. On the gaseous metabolism. Soil Sci. Plant Nutr., 16: 81–86.Google Scholar
  66. Krumböck, M., R. Conrad. 1991. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol., 85: 247–256.Google Scholar
  67. Kundu, D.K. 1987. Chemical kinetics of aerobic soils and rice growth. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.Google Scholar
  68. Kuwatsuka, S., K. Tsutsuki, K. Kumada. 1978. Chemical studies on humic acids. I. Elementary composition of humic acid. Soil Sci. Plant Nutr., 23: 337–347.Google Scholar
  69. Li Shi-jun, Li Xue-yuan. 1981. Stagnancy of water in paddy soils under the triple cropping system and its improvement. In: Proceedings of Symposium on Paddy Soil. Institute of Soil Science. Academica Sinica, ed. Science Press, Beijing, and Springer-Verlag, Berlin, p. 509–516.Google Scholar
  70. Lovley, D.R., M.J. Klug. 1983. Methanogenesis from methanol and from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol., 45: 1, 310–1, 315.Google Scholar
  71. Maesschalck, G.H., M. Verplancke, M. De Boodt. 1985. Water use and wateruse efficiency under different management systems for upland crops. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 397–408.Google Scholar
  72. Martin, U., H.U. Neue, H.W. Scharpenseel, P.M. Becker. 1983. Anaerobe Zersetzung von Reisstroh in einem gefluteten Reisboden auf den Philippinen. Mitt. Dtsch. Bodenkd1 Gesellsch., 38: 245–250.Google Scholar
  73. Mathrani, I.M., D.R. Boone, R.A. Mah, G.E. Fox, P.P. Lau. 1988. Methanohalophilus zhilinae sp.nov., an alkaliphilic halophilic methylotrophic methanogen. Int. J. Sys. Bacteriol., 38: 139–142.Google Scholar
  74. Matsushima, S., T. Tanaka, T. Hoshino. 1964a. Analysis of yield-determining process and its application to yield prediction and culture improvement of lowland rice. LXX combined effect of air temperature and water temperature at different stages of growth on the grain yield and its components of rice plants. Proc. Crop Sci. Soc. Jpn., 33: 53–58.Google Scholar
  75. Matsushima, S., T. Tanaka, T. Hoshino. 1964b. Analysis of yield-determining process and its application to yield prediction and culture improvement of lowland rice. LXX combined effect of air temperature and water temperature at different stages of growth on the growth and morphological characteristics of rice plants. Proc. Crop Sci. Soc. Jpn., 33: 135–140.Google Scholar
  76. McBride, B.C., R.S. Wolfe. 1971. Inhibition of methanogenesis by DDT. Nature, 234: 551.PubMedGoogle Scholar
  77. Miller, T.L., M.J. Wolin. 1985. Methanosphaera stadtmaniae gen.nov.sp.nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol., 141: 116–122.PubMedGoogle Scholar
  78. Mitsch, W.J., J.G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold Company New York, USA.Google Scholar
  79. Moormann, F.R., N. Van Breemen. 1978. Rice: Soil Water Land. International Rice Research Institute, P.O. Box 933, Manila, Philippines.Google Scholar
  80. Murray, P.A., S.H. Zinder. 1984. Nitrogen fixation by a methanogenic bacterium. Nature, 312: 284–286.Google Scholar
  81. Murrell, J.C., H. Dalton. 1983. Nitrogen fixation in obligate methanotrophs. J. Gen. Microbiol., 129: 3, 481–3, 486.Google Scholar
  82. Nagarajah, S., H.U. Neue, M.C.R. Alberto. 1989. Effect of Sesbania Azolla and rice straw incorporation on the kinetics of NH4, K, Fe, Mn, Zn, and P in some flooded rice soils. Plant Soil, 116: 37–48.Google Scholar
  83. Neue, H.U. 1985. Organic matter dynamics in wetland soils. In: Wetland Soils: Characterization, Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 109–122.Google Scholar
  84. Neue, H.U. 1988. Holistic view of chemistry of flooded soil. In: Proceedings of the First International Symposium on Paddy Soil Fertility, 6–13 December 1988. International Board for Soil Research and Management, Bangkok, p. 21–56.Google Scholar
  85. Neue, H.U. 1989. Rice growing soils: Constraints utilization and research needs. Pages 1–14 in Classification and management of rice growing soils. FFFTC Book Series No. 39. Food and Fertilizer Technology Center for the ASPAC Region, Taiwan, R.O.C.Google Scholar
  86. Neue, H.U. 1992. Agronomic practices affecting methane fluxes from rice cultivation. In: Trace Gas Exchange in a Global Perspective, Ecol. Bull. (Copenhagen), 42:174–182 (D.S. Ojima and B.H. Svensson, eds.).Google Scholar
  87. Neue, H.U., H.W. Scharpenseel. 1984. Gaseous products of the decomposition of organic matter in submerged soils. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 311–328.Google Scholar
  88. Neue, H.U., H.W. Scharpenseel. 1987. Decomposition pattern of 14C-labelled rice straw in aerobic and submerged rice soils of the Philippines. Science Total Environ., 62: 431–434.Google Scholar
  89. Neue, H.U., P.R. Bloom. 1989. Nutrient kinetics and availability in flooded soils. In: Progress in Irrigated Rice Research. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 173–190.Google Scholar
  90. Neue, H.U., P. Becker-Heidmann, H.W. Scharpenseel. 1990. Organic matter dynamics soil properties and cultural practices in ricelands and their relationship to methane production. In: Soils and the Greenhouse Effect ( A.F. Bouwman, ed.), John Wiley & Sons, Chichester, England, p. 457–466.Google Scholar
  91. Oremland, R.S., S. Polcin. 1982. Methanogenesis and sulfatereduction:competitive and noncompetitive substrate in estuarine sediments. Appl. Environ. Microbiol., 44: 1, 270–1, 276.Google Scholar
  92. Oremland, R.S., D.G. Capone. 1988. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microbiol. Ecol., 10: 285–383.Google Scholar
  93. Oremland, R.S., L.M. Marsh, S. Polcin. 1982. Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments. Nature (London), 296: 143–145.Google Scholar
  94. Panganiban, A.T., T.E. Patt, W. Hart, R.S. Hanson. 1979. Oxidation of methane in the absence of oxygen in lake water samples. Appl. Environ. Microbiol., 37: 303–309.PubMedGoogle Scholar
  95. Parashar, D., C.J. Rai, P.K. Gupta, N. Singh. 1990. Parameters affecting methane emission from paddy fields. Indian J. Radio Space Physics, 20: 12–17.Google Scholar
  96. Patel, G.B., L.A. Roth. 1977. Effect of sodium chloride on growth and methane production of methanogens. Can. J. Microbiol., 6: 893.Google Scholar
  97. Patra, P.K. 1987. Influence of water regime on the chemical kinetics of soils and rice growth. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.Google Scholar
  98. Patrick, W.H., Jr., C.N. Reddy. 1978. Chemical changes in rice soils. In: Soils and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 361–380.Google Scholar
  99. Patrick, W.H., Jr., D.S. Mikkelsen, B.R. Wells. 1985. Plant nutrient behavior in flooded soil. In: Fertilizer Technology and Use, 3d Ed. Soil Science Society of America Madison Wisconsin.Google Scholar
  100. Patt, T.E., G.C. Cole, J. Bland, R.S. Hanson. 1974. Isolation and characterisation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol., 120: 955–964.PubMedGoogle Scholar
  101. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron., 24: 29–96.Google Scholar
  102. Ponnamperuma, F.N. 1981. Some aspects of the physical chemistry of paddy soils. In: Proceedings of the Symposium of Paddy Soils. Science Press, Beijing People’s Republic of China, p 59–94.Google Scholar
  103. Ponnamperuma, F.N. 1984a. Effects of flooding on soils. In: Flooding and Plant Growth (T.T. Kozlowski, ed.), Academic Press, New York, USA, p 9–45.Google Scholar
  104. Ponnamperuma, F.N. 1984b. Straw as a source of nutrients for wetland rice. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 117–136.Google Scholar
  105. Ponnamperuma, F.N. 1985. Chemical kinetics of wetland rice soils relative to soil fertility. In: Wetland Soils: Characterization Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 71–89.Google Scholar
  106. Raimbault, M. 1975. Etude de linfluence inhibitrice de l’acétylene sur la formation biologique du méthane dans un sol de riziére. Ann. MicrobioL (Inst. Pasteur), 126a: 217–258.Google Scholar
  107. Raimbault, M. 1981. Inhibition de la formation de methane par l’acétylene chez Methananosarcina bakerii. Cah. ORSTOM, Ser. Biol., 43: 45–51.Google Scholar
  108. Raimbault, M., G. Rinaudo, J.L. Garcia, M. Boureau. 1977. A device to study metabolic gases in the rice rhizosphere. BioL Biochem., 9: 193–196.Google Scholar
  109. Rajagopal, B.S., N. Belay, L. Daniels. 1988. Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol., 53: 153–158.Google Scholar
  110. Roger, P.A., I. Watanabe. 1984. Algae and aquatic weeds as source of organic matter and plant nutrients for wetland rice. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 147–168.Google Scholar
  111. Roger, P.A., I.F. Grant, P.N. Reddy, I. Watanabe. 1987. The photosynthetic aquatic biomass in wetland ricefields and its effect on nitrogen dynamics. In: Efficiency of N Fertilizers for Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 43–68.Google Scholar
  112. Salvas, P.L., B.F. Taylor. 1980. Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (Nitrapin or N-serve) Curr. Microbiol., 4: 305.Google Scholar
  113. Sass, R.L., F.M. Fischer, P.A. Harcombe, F.T. Turner. 1991. Methane production and emission in a Texas rice field. Global Biogeochem. Cycles, 4: 47–68.Google Scholar
  114. Schink, B., J.G. Zeikus. 1980. Microbial methanol formation: a major end product of protein metabolism. Curr. Microbiol., 4: 387–389.Google Scholar
  115. Schönheit, P., H. Keweloh, R.K. Thauer. 1981. Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol. Lett., 12: 347–349.Google Scholar
  116. Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, W. Seiler. 1989. A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res., 94: 16, 405–16, 416.Google Scholar
  117. Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbial Ecology ( M.J. Kleig and C.A. Reddy, eds.), American Society of Microbiology, Washington D.C., p 468–477.Google Scholar
  118. Seiler, W., R. Conrad. 1987. Contribution of tropical ecosystems to the global budget of trace gases especially CH4 H2 CO and N2O. In: The Geography of Amazonia: Vegetation and Climate Interactions ( R.E. Dickinson, ed.), Wiley, N.Y., p 133–162.Google Scholar
  119. Sequi, P., M. De Nobili, L. Leita L, G. Cerciguani. 1986. A new index of humification. Agrochemical, 30: 175–179.Google Scholar
  120. Sharma, P.K., S.K. De Datta. 1985. Effects of puddling on soil physical properties and processes. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 217–234.Google Scholar
  121. Smith, J., H.U. Neue, G. Umali. 1987. Soil nitrogen and fertilizer recommendations for irrigated rice in the Philippines. Agric. Sys., 24: 165–181.Google Scholar
  122. Smith, P.H., R.E. Hungate. 1958. Isolation and characterization of Methanobacterium ruminantium n.sp. J. BacterioL, 75: 713–718.PubMedGoogle Scholar
  123. Snitwongse, P., S. Pongpan, H.U. Neue. 1988. Decomposition of 14C-labelled rice straw in a submerged and aerated rice soil in Northeastern Thailand. In: Proceedings of the First International Symposium on Paddy Soil Fertility, 6–13 December 1988. International Board for Soil Research and Management, Bangkok, p 461–480.Google Scholar
  124. Sposito, G. 1981. The Thermodynamics of Soil Solutions. Clarendon Press, Oxford.Google Scholar
  125. Stone, B. 1990. Evolution and diffusion of agricultural technology in China. In: Sharing Innovation Global Perspectives on Food Agriculture and Rural Development (N.G. Kotler, (ed.), International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 35–93.Google Scholar
  126. Strayer, R.F., J.M. Tiedje. 1978. Kinetic parameters of the conversion of methane precursors to methane in hypereutrophic lake sediment. Appl. Environ. Microbiol., 36: 330–340.PubMedGoogle Scholar
  127. Svensson, B.H. 1984. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 48: 389–394.PubMedGoogle Scholar
  128. Takai, Y. 1961. Reduction and microbial metabolism in paddy soils (3) [in Japanese English summary]. Nogyo Gijitsu (Agro. Technol.), 19: 122–126.Google Scholar
  129. Takai, Y. 1970. The mechanism of methane fermentation in flooded soils. Soil Sci. Plant Nutr., 16: 238.Google Scholar
  130. Takai, Y., T. Koyama, T. Kamura. 1956. Microbial metabolism in reduction process of paddy soil. Part I. Soil Plant Food, 2: 63–66.Google Scholar
  131. Toukdarian, A.E., M.E. Lidstrom. 1984. Nitrogen metabolism in a new obligate methanotroph Methylosinus strain 6. J. Gen. Microbiol., 130: 1, 827–1, 837.Google Scholar
  132. Tsuchiya, K., H. Wada, Y. Takai. 1986. Leaching of substances from paddy soils. 4. Water solubilization of inorganic components in submerged soils. Jpn. J. Soil Sci. Plant Nutr., 57 (6): 593–597.Google Scholar
  133. Tsutsuki, K., S. Kuwatsuka. 1978. Chemical studies on soil humic acids. II. Composition of oxygen-containing functional groups of humic acids. Soil Sci. Plant Nutr., 24: 547–560.Google Scholar
  134. Tsutsuki, K., K. Kumada. 1980. Chemistry of humic acids [in Japanese; English summary]. Fert. Sci., 3: 93–171.Google Scholar
  135. Tsutsuki, K., F.N. Ponnamperuma. 1987. Behavior of anaerobic decomposition products in submerged soils. Effects of organic material amendment soil properties and temperature. Soil Sci. Plant Nutr., 33 (1): 13–33.Google Scholar
  136. USDA - United States Department of Agriculture, Soil Conservation Service Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Agric. Handb. 436. U.S. Government Printing Office, Washington, D.C.Google Scholar
  137. Vogels, G.D., J.T. Keltjens, C. Van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms (A.J.B. Zehnder, ed. ), Wiley New York, p 707–770.Google Scholar
  138. Wang, Zhaoqian. 1986. Rice-based systems in subtropical China. In: Wetlands and Rice in Subsaharan Africa (A.S.R. Juo and J.A. Lowe, eds.), IITA Ibadan Nigeria, p 195–206.Google Scholar
  139. Ward, D.M., M.R. Winfrey. 1985. Interactions between methanogenic and sulfate-reducing bacteria in sediments. Adv. Aquatic Microbiol., 3: 141–179.Google Scholar
  140. Watanabe, I. 1984. Use of green manures in Northeast Asia. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 229–233.Google Scholar
  141. Watanabe, I., P.A. Roger. 1985. Ecology of flooded ricefields. In: Wetland Soils: Characterization Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 229–246.Google Scholar
  142. Whittenbury, R., K.A. Phillips, J.K. Wilkinson. 1970a. Enrichment isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol., 61: 205–218.PubMedGoogle Scholar
  143. Whittenbury, R., S.L. Davies, J.F. Davey. 1970b. Exospores and cysts formed by methane-utilizing bacteria. J. Gen. Microbiol., 61: 219–226.PubMedGoogle Scholar
  144. Whitton, B.A., J.A. Rother. 1988. Environmental features of deepwater ricefields in Bangladesh during the flood season. In: 1987 International Deepwater Rice Workshop. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 47–54.Google Scholar
  145. Williams, R.T, R.L. Crawford. 1984. Methane production in Minnesota peatlands. Appl. Environ. Microbiol., 47: 1, 266–1, 271.Google Scholar
  146. Williams, R.T., R.L. Crawford. 1985. Methanogenic bacteria including an acid tolerant strain from peatlands. Appl. Environ. Microbiol., 50: 1, 542–1, 544.Google Scholar
  147. Winfrey, M.R, J.G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol., 33: 275–281.PubMedGoogle Scholar
  148. Worakit, S., D.R. Boone, R.A. Mah, M.E. Abdel-Samie, M.M. El-Halwagi. 1986. Methanobacterium alcaliphilum sp. nov. an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol., 36: 380–382.Google Scholar
  149. Yagi, K., K. Minami. 1990. Effects of organic matter application on methane emission from Japanese paddy fields. In: Soil and the Greenhouse Effects (A.F. Bouwman, ed. ), John Wiley, p 467–473.Google Scholar
  150. Yamane, I., S. Sato. 1961. Effect of temperature on the formation of gases and ammonium nitrogen in the waterlogged soils. Rep. Inst. Agric. Res. Tokoku Univ., 12: 1–10.Google Scholar
  151. Yoshida, S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute, P.O. Box 933, Manila, Philippines. 269 p.Google Scholar
  152. Yu, T. 1985. Physical Chemistry of Paddy Soils. Springer-Verlag, Berlin. Zeikus, J.G., D.L. Henning. 1975. Methanobacterium arboriphilus sp.nov. an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek. J. Microbiol. Serol., 41: 543–552.Google Scholar
  153. Zhao, Y., D.R. Boone, R.A. Mah, J.E. Boone, L. Xun. 1989. Isolation and characterization of Methanocorpusculum labreanum sp.nov. from the LaBrea Tar Pits. Int. J. Syst. Bacteriol., 39: 10–13.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  1. 1.The International Rice Research InstituteManilaPhilippines
  2. 2.Laboratoire de Microbiologie ORSTOMUniversité de ProvenceMarseille Cedex 3France

Personalised recommendations