Skip to main content

Towards a General Description of Phytoplankton Growth for Biogeochemical Models

  • Conference paper

Part of the book series: NATO ASI Series ((volume 10))

Abstract

The growth of phytoplankton is fundamentally important to biogeochemical cycling in the sea, and models of this process are essential to describing the fluxes of carbon, nitrogen, and many other elements in the ocean. We address here nitrogen-based models that predict the photosynthesis and growth of phytoplankton for use in basin-scale simulations of marine biogeochemical processes. These models describe light absorption by photosynthetic pigments and biological transformations of carbon and nitrogen, so they must specify, implicitly or explicitly, the cellular chemical composition of phytoplankton (i.e., chlorophyll a, C and N) and photosynthesis per unit chlorophyll a as a function of irradiance (P B vs. E).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antia NJ, Harrison PJ, Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia. 30:1–89.

    Article  Google Scholar 

  • Bannister TT (1979) Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol Oceanogr. 24:76–96.

    Article  Google Scholar 

  • Baumert H, Uhlmann D (1983) Theory of the upper limit to phytoplankton production per unit area in natural waters. Int Revue ges Hydrobiol. 68:753–783.

    Article  Google Scholar 

  • Bidigare RR, Prézelin BB, Smith RC (1992) Bio-optical models and the problems of scaling. In: Falkowski PG, Woodhead A, (eds) Primary Productivity and Biogeochemical Cycling in the Sea, Plenum, New York, p 175–212

    Chapter  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr. 36:1555–1577.

    Article  Google Scholar 

  • Chalup MS, Laws EA (1990) A test of the assumptions and predictions of recent microalgal growth models with the marine phytoplankter Pavlova lutheri. Limnol Oceanogr. 35:583–596.

    Article  Google Scholar 

  • Chan AT (1978) Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J Phycol. 14:396–402.

    Google Scholar 

  • Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep-Sea Res. 37:667–683.

    Article  Google Scholar 

  • Cullen JJ, Yang X, MacIntyre HL (1992) Nutrient limitation of marine photosynthesis. In: Falkowski PG, Woodhead A, (eds) Primary Productivity and Biogeochemical Cycles in the Sea, Plenum, New York, p 69–88

    Chapter  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol.27:2–8.

    Article  Google Scholar 

  • Denman KL, Marra J (1986) Modelling the time dependent photoadaption of phytoplankton in fluctuating light. In: Nihoul JCJ, (ed) Marine interfaces ecohydrodynamics, Elsevier, Amsterdam, p 341–360

    Chapter  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser. 61:183–201.

    Article  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27:1335–1349.

    Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modelling. 42:199–215.

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull. 70:1063–1085.

    Google Scholar 

  • Eppley RW (1980) Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Falkowski PG, (ed) Primary Productivity in the Sea, Plenum, New York, p 231–242

    Chapter  Google Scholar 

  • Falkowski PG (1992) Molecular ecology of phytoplankton photosynthesis. In: Falkowski PG, Woodhead A, (eds) Primary Productivity and Biogeochemical Cycles in the Sea, Plenum, New York, p 47–67

    Chapter  Google Scholar 

  • Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationship in phytoplankton. Limnol Oceanogr. 30:311–321.

    Article  Google Scholar 

  • Garside C, Glover HE (1991) Chemiluminescent measurements of nitrate kinetics: I. Thalassiosira pseudonana (clone3H) and neritic assemblages. J Plankton Res. 13 Suppl.:5–19.

    Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol. 106:1–34.

    Article  Google Scholar 

  • Geider RJ (1990) The relationship between steady state phytoplankton growth and photosynthesis. Limnol Oceanogr. 35:971–972.

    Article  Google Scholar 

  • Geider RJ (1992a) Quantitative phytoplankton ecophysiology: implications for primary production and phytoplankton growth. ICES mar Sci Symp. 194: (in press)

    Google Scholar 

  • Geider RJ (1992b) Respiration: Taxation without representation. In: Falkowski PG, Woodhead A, (eds) Primary Productivity and Biogeochemical Cycles in the Sea, Plenum, New York, p 333–360

    Chapter  Google Scholar 

  • Geider RJ, Osborne BA, Raven JA (1986a) Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels. J Phycol. 22:39–48.

    Article  Google Scholar 

  • Geider RJ, Platt T, Raven JA (1986b) Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser. 30:93–104.

    Article  Google Scholar 

  • Goldman JC (1980) Physiological processes, nutrient availability, and concept of relative growth rate in marine phytoplankton ecology. In: Falkowski PG, (ed) Primary Productivity in the Sea, Plenum, New York, p 179–194

    Chapter  Google Scholar 

  • Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana(Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies. J Phycol. 25:462–471

    Article  Google Scholar 

  • Janowitz GS, Kamykowski D (1991) An eulerian model of phytoplankton photosynthetic response in the upper mixed layer. J Plankton Res. 13:983–1002.

    Article  Google Scholar 

  • Kiefer DA, Cullen JJ (1991) Phytoplankton growth and light absorption as regulated by light, temperature, and nutrients. Polar Res. 10:163–172.

    Article  Google Scholar 

  • Kiefer DA, Mitchell DG (1983) A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol Oceanogr. 28:770–776.

    Article  Google Scholar 

  • Kirk JTO (1983) Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge

    Google Scholar 

  • Kok B (1952) On the efficiency of Chlorella growth. Acta Botanica Neerlandica. 1:445–476.

    Article  Google Scholar 

  • Lancelot C, Billen G, Veth, C, Becquevort S, Mathot S (1991a) Modelling carbon cycling through phytoplankton and microbes in the Scotia-Weddell Sea area during sea ice retreat. Mar Chem. 35:305–324.

    Article  Google Scholar 

  • Lancelot C, Veth C, Mathot S (1991b) Modelling ice-edge phytoplankton bloom in the Scotia-Weddell sea sector of the Southern Ocean during spring 1988. J Mar Syst. 2:333–346.

    Article  Google Scholar 

  • Langdon C (1988) On the causes of interspecific differences in the growth-irra-diance relationship for phytoplankton. II. A general review. J Plankton Res. 10:1291–1312.

    Article  Google Scholar 

  • Langdon C (1992) The significance of respiration in phytoplankton production. ICES mar Sci Symp. 194:(in press)

    Google Scholar 

  • Laws EA, Bannister TT (1980) Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr. 25:457–473.

    Article  Google Scholar 

  • Laws EA, Chalup MS (1990) A microalgal growth model. Limnol Oceanogr. 35:597–608.

    Article  Google Scholar 

  • Li WKW, Morris I (1982) Temperature adaptation in Phaeodactylum tricornutum Bohlin: photosynthetic rate compensation and capacity. J Exp Mar Biol Ecol 58:135–150.

    Article  Google Scholar 

  • Margalef R (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta. 1:493–509.

    Google Scholar 

  • Marra J et al. (1992) Estimation of seasonal primary production from moored optical sensors in the Sargasso Sea. J Geophys Res. 97:7399–7412.

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr. 36:19.

    Article  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28:1375–1393.

    Article  Google Scholar 

  • Morel A, Lazzara L, Gostan J (1987) Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color). Limnol Oceanogr. 32:1066–1084.

    Article  Google Scholar 

  • Morel FMM (1987) Kinetics of nutrient uptake and growth in phytoplankton. J Phycol. 22:1037–150.

    Google Scholar 

  • Morel FMM, Hudson RJM, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr. 36:1742–1755.

    Article  Google Scholar 

  • Myers J (1970) Genetic and adaptive physiological characteristics observed in the Chlorellas. In: Malek I, (ed) Prediction and measurement of photosynthetic productivity, Center for Agricultural Publishing and Documentation, Wagenigen, p 447–454

    Google Scholar 

  • Myers J (1980) On the algae: thoughts about physiology and measurements of efficiency. In: Falkowski PG, (ed) Primary productivity in the sea, Plenum Press, New York, p 1–16

    Chapter  Google Scholar 

  • Nielsen MV (1992) Irradiance and daylength effects on growth and chemical composition of Gyrodinium aureolum. J Plankton Res. 14:811–820.

    Article  Google Scholar 

  • Osborne BA, Geider RJ (1987) Photon requirement for growth of the diatom Phaeodactylum tricornutum (Bacillariophyceae). Plant Cell Environ. 10:17.

    Article  Google Scholar 

  • Pahl-Wostl C, Imboden DM (1990) DYPHORA — A dynamic model for the rate of photosynthesis of algae. J Plankton Res. 12:1207–1221.

    Article  Google Scholar 

  • Peterson DH, Perry MJ, Bencala KE, Talbot MC (1987) Phytoplankton productivity in relation to light intensity: A simple equation. Est Coastal Shelf Sci. 24:813–832.

    Article  Google Scholar 

  • Pirt SJ, Lee YK, Richmond A, Watts-Pirt M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Tech Biotech. 30:25–34.

    Article  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol. 110:441–461.

    Article  Google Scholar 

  • Raven JA, Johnston AM (1991) Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for use of other resources. Limnol Oceanogr. 36:1701–1714.

    Article  Google Scholar 

  • Sakshaug E, Kiefer DA, Andresen K (1989) A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costaturn. Limnol Oceanogr. 34:198–205.

    Article  Google Scholar 

  • Shuter B (1979) A model of physiological adaptation in unicellular algae. J TheorBiol. 78:519–552.

    Google Scholar 

  • Steele JH, Yentsch CS (1960) The vertical distribution of chlorophyll. J Mar Biol Ass UK. 39 :217–226.

    Article  Google Scholar 

  • Thomas WH, Dodson AN (1972) On nitrogen deficiency in tropical Pacific oceanic phytoplankton. II. Photosynthetic and cellular characteristics of a chemostat-grown diatom. Limnol Oceanogr. 17:515–523

    Article  Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol. 5:105–112.

    Article  Google Scholar 

  • Waite AM, Thompson PA, Harrison PJ (1992) Does energy control the sinking rate of marine diatoms? Limnol Oceanogr. 37:468–477

    Article  Google Scholar 

  • Zevenboom W, Mur LR (1984) Growth and photosynthetic response of the cyanobacterium Microcystis aeruginosa in relation to photoperiodicity and irradiance. Arch Microbiol. 139 :232–239.

    Article  Google Scholar 

  • Zevenboom W, van Donk E, Mur LC (1980) Effect of temperature on nitratelimited Oscillatoria agardhii: a preliminary study. In: Zevenboom W, Oscillatoria agardhii: a comparative investigation of continuous cultures and natural populations of a cyanobacterium, Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cullen, J.J. et al. (1993). Towards a General Description of Phytoplankton Growth for Biogeochemical Models. In: Evans, G.T., Fasham, M.J.R. (eds) Towards a Model of Ocean Biogeochemical Processes. NATO ASI Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84602-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84602-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84604-5

  • Online ISBN: 978-3-642-84602-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics