Extraction of Atmospheric Signals from Radiance Measurements: Some Limitations

  • M. J. Uddstrom
  • L. M. McMillin
Conference paper
Part of the NATO ASI Series book series (volume 9)

Abstract

The ability to extract useful information from measured radiances, whether for meteorological or climate purposes, is reliant upon a proper understanding of the error characteristics of the measurements and resulting products. Data error characteristics of the current generation of infrared and microwave sounders are discussed, and the resulting consequences for a physical retrieval algorithm demonstrated.

Keywords

Microwave Covariance Shrinkage Assimilation Nash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chedin, A., 1988: Editor; Report on the ITRA (Intercomparison of Transmittance and Radiance Algorithms) Campaign and Workshop. Pub. International Radiation Commission.Google Scholar
  2. Luers, J. K., 1990: Estimating the temperature error of the radiosonde rod thermistor under different environments. Journal of Atmospheric and Oceanic Technology, 7, 882–895.CrossRefGoogle Scholar
  3. Mclnturff, R.M., F.G. Finger, K.W. Johnson and J.D. Laver 1979: Day - night differences in radiosonde observations in the stratosphere and troposphere. NOAA Technical Memorandum NWS NMC 63, 47 pp.Google Scholar
  4. McMillin, L.M., M.J. Uddstrom and A Coletti, 1992: A procedure for correcting radiosonde reports for radiation errors. Submitted to Journal of Atmospheric and Oceanic Technology.Google Scholar
  5. Nash, J. and F.J. Schmidlin, 1987: Final Report of the WMO International Radiosonde Comparison (U.K. 1984, U.S.A. 1985), Instruments and Observing Methods, Rep No. 30, 103 pp.Google Scholar
  6. NOAA/NESS 107 Rev 1, 1988: Data extraction and calibration of the TIROS-N/NOAA Radi- ometers. NOAA Technical Memorandum NESS 107 - Rev. 1, 58 pp.Google Scholar
  7. Neter, J., W. Wasserman and M.H. Kutner, 1989: Applied linear regression models, Second Edition. Pub. Irwin, Homewood, IL, U.S.A. 667 pp.Google Scholar
  8. Oman, S.D., 1982: Shrinking towards subspaces in multiple linear regression. Technometrics, 24, 307–311.CrossRefGoogle Scholar
  9. Reale, A.L., H E. Fleming, D.Q. Wark, C.S. Novak, F.S. Zbar, J.R. Neilon, M.E. Gelman and H.J. Bloom, 1990: Baseline Upper Air Network (BUAN) Final Report. NOAA Technical Report NESDIS 52, 57 pp.Google Scholar
  10. Schmidlin, F.J. and J.K. Luers, 1987: US Radiosonde temperature errors, methods of correction and evidence of data improvement. In Extended Abstracts to 6th AMS Symposium on Methods of Observation and Instrumentation, New Orleans, LA, U.S.A. Pub American Meteorological Society, 463–466.Google Scholar
  11. Spänkuch, D., 1988: In Report on the ITRA (Intercomparison of Transmittance and Radiance Algorithms) Campaign and Workshop. Pub. International Radiation Commission.Google Scholar
  12. Uddstrom, M.J. and D.Q. Wark, 1985: A classification scheme for satellite temperature retrievals. Journal of Climate and Applied Meteorology, 24, 16–29.CrossRefGoogle Scholar
  13. Uddstrom, M.J. 1988: Retrieval of atmospheric profiles from satellite radiance data by typical shape function maximum a posteriori simultaneous retrieval estimators. Journal of Applied Meteorology, 25, 515–549.CrossRefGoogle Scholar
  14. Uddstrom, M.J. 1989: A comparison of Philips RS4 and Vaisala RS80 radiosonde data Journal of. Atmospheric and Oceanic Technology, 6, 201–207.CrossRefGoogle Scholar
  15. Uddstrom, M.J. 1991: Forward model errors. In the technical Proceedings of the sixth International TOVS Study Conference, Airlie, VA, U.S.A., Pub CIMSS, University of Wisconsin, 501-516.Google Scholar
  16. Weinreb, M.P., H.E. Fleming, L.M. McMillin and A.C. Neuendorffer, 1981: Transmittances for the TIROS operational vertical sounder. NOAA Technical Report NESS 85, 60 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. J. Uddstrom
    • 1
  • L. M. McMillin
    • 2
  1. 1.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
  2. 2.Satellite Experiment Laboratory NOAA/NESDIS/ORAUSA

Personalised recommendations