Skip to main content

The Role of PEEP in the Mechanically Ventilated COPD Patient

  • Conference paper
Ventilatory Failure

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 15))

Abstract

The approach to mechanical ventilation (MV) of the critically ill patient will vary according to the pathophysiological events underlying the development of acute respiratory failure. In this regard, it is clinically useful to classify acute respiratory failure into two major categories — “type 1” or hypoxemic respiratory failure and “type 2” or hypercapnic ventilatory failure [1]. The former category is best examplified by the adult respiratory distress syndrome (ARDS). The underlying pathophysiology in this condition is one of diffuse alveolar injury characterized by extensive alveolar edema and collapse, a reduction in lung volume, and marked hypoxemia relatively refractory to high inspired concentrations of oxygen [2]. MV with the addition of positive end-expiratory pressure (PEEP) is the treatment modality most commonly employed to improve oxygenation in such patients. PEEP is considered to act through its ability to re-expand flooded and atelectatic alveolar units, increase functional residual capacity, and thereby reduce the magnitude of venous admixture [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balk R, Bone RC (1983) Classification of acute respiratory failure. Med Clin NA 76:551–556

    Google Scholar 

  2. Johanson WG, Peters JI (1988) Respiratory failure: pathophysiology and treatment. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine, 1st ed. W.B. Saunders, Philadelphia, pp 2017–2034

    Google Scholar 

  3. Roussos C (1982) The failing ventilatory pump. Lung 160:59–84

    Article  PubMed  CAS  Google Scholar 

  4. Ashbaugh DG, Petty TL (1973) Positive end-expiratory pressure. Clinical indications and contraindications. J Thorac Cardiovasc Surg 65:165–170

    PubMed  CAS  Google Scholar 

  5. Gong H Jr (1982) Positive-pressure ventilation in the adult respiratory distress syndrome. Clin Chest Med 3:69–88

    PubMed  Google Scholar 

  6. Kacmarek RM, Petty TL (1988) Historical development of positive end-expiratory pressure. Respir Care 33:422–433

    Google Scholar 

  7. Marini JJ (1989) Should PEEP be used in airflow obstruction? Am Rev Respir Dis 140:1–3

    Article  PubMed  CAS  Google Scholar 

  8. Rossi A, Brandolese R, Milic-Emili J, Gottfried SB (1990) The role of PEEP in patients with chronic obstructive pulmonary disease during assisted ventilation. Eur Respir J 3:818–822

    PubMed  CAS  Google Scholar 

  9. Gottfried SB, Rossi A, Milic-Emili J (1986) Dynamic hyperinflation, intrinsic PEEP, and the mechanically ventilated patient. Intensive Crit Care Digest 5:30–33

    Google Scholar 

  10. Derenne JP, Fleury B, Pariente R (1988) Acute respiratory failure of chronic obstructive pulmonary disease. Am Rev Respir Dis 138:1006–1033

    Article  PubMed  CAS  Google Scholar 

  11. Kimball WR, Leith DE, Robins AG (1982) Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am Rev Respir Dis 126:991–995

    PubMed  CAS  Google Scholar 

  12. Pepe PE, Marini J J (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. The auto-PEEP effect. Am Rev Respir Dis 126:166–170

    PubMed  CAS  Google Scholar 

  13. Gottfried SB, Rossi A, Higgs BD, et al (1985) Non-invasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am Rev Respir Dis 131:414–420

    PubMed  CAS  Google Scholar 

  14. Fleury B, Murciano C, Talamo C, Aubier M, Pariente R, Milic-Emili J (1985) Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis 131:822–827

    PubMed  CAS  Google Scholar 

  15. Broseghini C, Brandolese R, Poggi R, et al (1988) Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis 138:355–361

    PubMed  CAS  Google Scholar 

  16. Rossi A, Gottfried SB, Zocchi L, et al (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation: the effect of intrinsic PEEP. Am Rev Respir Dis 131:672–677

    PubMed  CAS  Google Scholar 

  17. Macklem PT (1984) Hyperinflation. Am Rev Respir Dis 129:1–2

    PubMed  CAS  Google Scholar 

  18. Tobin MJ (1988) Respiratory muscles in disease. Clin Chest Med 9:263–286

    PubMed  CAS  Google Scholar 

  19. Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomere adaptability. J Appl Physiol 54:1635–1640

    PubMed  CAS  Google Scholar 

  20. Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1990) Contractile properties of the human diaphragm during chronic hyperinflation. Am Rev Respir Dis 141: A166

    Google Scholar 

  21. Conti G, Bufi M, Antonelli M, Rocco M, Gasparetto A (1989) Pressure support ventilation reverses hyperinflation induced isorhythmic A-V dissociation. Intensive Care Medicine 15:319–321

    Article  PubMed  CAS  Google Scholar 

  22. Marini J J (1991) Ventilatory management of COPD. In: Cherniack NS (ed) Chronic obstructive pulmonary disease, W.B. Saunders Company, Philadelphia, pp 495–519

    Google Scholar 

  23. Roussos C (1985) Energetics. In: Roussos C, Macklem PT (eds) The Thorax. Marcel Dekker, New York, pp 437–492

    Google Scholar 

  24. Smith TC, Marini J J (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65:1488–1499

    PubMed  CAS  Google Scholar 

  25. Simkovitz P, Brown K, Goldberg P, Milic-Emili J, Gottfried SB (1987) Interaction between intrinsic and externally applied PEEP during mechanical ventilation. Am Rev Respir Dis 135: A202

    Google Scholar 

  26. Ranieri M, Calderini E, Eissa T, Petrof B, Gottfried SB (1990) PEEP reduces inspiratory effort during synchronized intermittent mandatory ventilation (SIMV) in COPD. Am Rev Respir Dis 141: A572

    Google Scholar 

  27. Calderini E, Petrof B, Gottfried SB (1989) Continuous positive airway pressure improves efficacy of pressure support ventilation in severe COPD. Am Rev Respir Dis 139: Al55

    Google Scholar 

  28. Gay CG, Rodarte JR, Hubmayr RD (1989) The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. Am Rev Respir Dis 139:621–626

    PubMed  CAS  Google Scholar 

  29. Mead J, Turner JM, Macklem PT, Little JB (1967) Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 22:95–108

    PubMed  CAS  Google Scholar 

  30. Pride NB, Permutt S, Riley RL, Bromberger-Barnea (1967) Determinants of maximal expiratory flow from the lungs. J Appl Physiol 23:646–662

    PubMed  CAS  Google Scholar 

  31. Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18:924–932

    PubMed  CAS  Google Scholar 

  32. Petrof BJ, Légaré M, Goldberg P, Milic-Emili J, Gottfried SB (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141:281- 289

    PubMed  CAS  Google Scholar 

  33. McNamara JJ, Castile RG, Glass GM, Fredberg JJ (1987) Heterogeneous lung emptying during forced expiration. J Appl Physiol 63:1648–1657

    PubMed  CAS  Google Scholar 

  34. Tuxen DV, Lane S (1987) The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis 136:872–879

    Article  PubMed  CAS  Google Scholar 

  35. Tuxen DV (1989) Detrimental effects of positive end-expiratory pressure during controlled mechanical ventilation of patients with severe airflow obstruction. Am Rev Respir Dis 140:5–9

    Article  PubMed  CAS  Google Scholar 

  36. Pride NB, Macklem PT (1986) Lung mechanics in disease. In: Fishman AP (ed) Handbook of physiology, section 3: The respiratory system, volume 3, Mechanics of breathing. American! Physiological Society, Bethesda, pp 659–692

    Google Scholar 

  37. James AJ, Paré PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139:242–246

    Article  PubMed  CAS  Google Scholar 

  38. Ebina M, Yaegashi H, Chiby R et al (1990) Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles. Am Rev Respir Dis 141:1327–1332

    PubMed  CAS  Google Scholar 

  39. Djukanovic R, Roche WR, Wilson JW et al (1990) Mucosal inflammation in asthma. Am Rev Respir Dis 142:434–457

    PubMed  CAS  Google Scholar 

  40. Qvist J, Anderson JB, Pemberton M, Bennike KA (1982) High level PEEP in severe asthma. N Engl J Med 307:1347–1348

    Article  PubMed  CAS  Google Scholar 

  41. Weng JT, Smith DE, Graybar GB, Kirby RR (1984) Hypotension secondary to air trapping treated with expiratory flow retard. Anesthesiology 60:350–353

    Article  PubMed  CAS  Google Scholar 

  42. Tenaillon A, Salmona JP, Burdon M (1983) Continuous positive airway pressure in asthma. Am Rev Respir Dis 127:658

    PubMed  CAS  Google Scholar 

  43. Marini J J, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87:612–618

    Article  PubMed  CAS  Google Scholar 

  44. Marini J J, Rodriguez RM, Lamb V (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134:902–909

    PubMed  CAS  Google Scholar 

  45. Ward ME, Corbeil C, Gibbons W, Newman S, Macklem PT (1988) Optimization of respiratory muscle relaxation during mechanical ventilation. Anesthesiology 69:26–35

    Article  Google Scholar 

  46. Downs JB, Klein EF, Desautels D, Modell JH, Kirgy RR (1973) IMV: a new approach to weaning patients from mechanical ventilation. Chest 64:331–335

    Article  PubMed  CAS  Google Scholar 

  47. Venus B, Smith RA, Mathru M (1987) National survey of methods and criteria used for weaning from mechanical ventilation. Crit Care Med 15:530–533

    Article  PubMed  CAS  Google Scholar 

  48. Braschi A, Iotti G, Rodi G, Emmi V, Sala Gallini G (1988) Dynamic pulmonary hyperinflation during intermittent mandatory ventilation. Intensive Care Med 14:284

    Google Scholar 

  49. Fernandez R, Benito S, Blanch LL, Net A (1988) Intrinsic PEEP: a cause of inspiratory muscle ineffectivity. Intensive Care Med 15:51–52

    Article  PubMed  CAS  Google Scholar 

  50. Marini JJ, Smith TC, Lamb VJ (1988) External work output and force generation during synchronized intermittent mechanical ventilation: effect of machine assistance on breathing effort. Am Rev Respir Dis 138:1169–1179

    PubMed  CAS  Google Scholar 

  51. Kacmarek RM (1988) The role of pressure support ventilation in reducing imposed work of breathing. Respir Care 33:99–120

    Google Scholar 

  52. Maclntyre NR (1986) Respiratory function during pressure support ventilation. Chest 89:677–683

    Article  Google Scholar 

  53. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521

    Article  PubMed  CAS  Google Scholar 

  54. Ranieri VM, Giuliani R, Gottfried SB, et al (1991) Effects of PEEP on hemodynamics and gas exchange in mechanically ventilated COPD patients (in press)

    Google Scholar 

  55. Dhainaut JF, Brunei F, Monsallier JF, et al (1987) Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 15:148–152

    Article  PubMed  CAS  Google Scholar 

  56. Campbell EJM, Dikinson CJ, Dinnick OP, Howell JBL (1964) The immediate effects of threshold loads on the breathing of men and dogs. Clin Sei 172:321–331

    CAS  Google Scholar 

  57. O’Donnell DE, Sanii R, Anthonisen NR, Younes M (1987) Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 135:912–918

    PubMed  Google Scholar 

  58. Reissmann H, Ranieri M, Goldberg P, Gottfried SB (1990) CPAP improves breathing pattern and gas exchange during weaning in COPD. Chest 98:76S

    Google Scholar 

  59. Hillman DR, Finucane KE (1985) Continuous positive airway pressure: a breathing system to minimize respiratory work. Crit Care Med 13:38–43

    Article  PubMed  CAS  Google Scholar 

  60. Gibney RIN, Wilson RS, Pontoppidan H (1982) Comparison of work of breathing on high gas flow and demand-valve continuous positive airway pressure systems. Chest 82:692–695

    Article  PubMed  CAS  Google Scholar 

  61. Barach AL (1973) Physiologic advantages of grunting, groaning, and pursed-lip breathing: the development of continuous positive pressure breathing. Bull NY Acad Med 49:666–673

    CAS  Google Scholar 

  62. Thoman RL, Stroker GL, Ross JC (1966) The efficacy of pursed lip breathing in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 93:100–106

    PubMed  CAS  Google Scholar 

  63. Ingram RH Jr, Schilder DP (1967) Effect of pursed lip breathing on the pulmonary pressure- flow relationship in obstructive lung disease. Am Rev Resp Dis 96:381–388

    PubMed  Google Scholar 

  64. Mueller RE, Petty TL, Filley GF (1970) Ventilation and arterial blood gases induced by pursed lip breathing. J Appl Physiol 28:784–789

    PubMed  CAS  Google Scholar 

  65. Fitting JW, Chartrand DA, Bradley TD, Killian KJ, Grassino A (1987) Effect of thoracoabdominal breathing patterns on inspiratory effort sensation. J Appl Physiol 62:1665–1670

    PubMed  CAS  Google Scholar 

  66. Haluszka J, Chartrand DA, Grassino AC, Milic-Emili J (1990) Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 141:1194–1197

    PubMed  CAS  Google Scholar 

  67. Pierson DJ (1990) Complications associated with mechanical ventilation. Crit Care Clin 6:711–724

    PubMed  CAS  Google Scholar 

  68. Rosen RL, Bone RC (1988) Economics of mechanical ventilation Clin Chest Med 9:163–170

    CAS  Google Scholar 

  69. Meduri GU, Conoscenti CC, Menashe P, Nair S (1989) Noninvasive face mask ventilation in patients with acute respiratory failure. Chest 95:865–870

    Article  PubMed  CAS  Google Scholar 

  70. Carrey Z, Gottfried SB, Levy RD (1990) Ventilatory muscle support in respiratory failure with nasal positive pressure ventilation. Chest 97:150–158

    Article  PubMed  CAS  Google Scholar 

  71. Goldberg P, Reissmann H, Ranieri M, Gottfried SB (1990) CPAP reduces inspiratory effort during acute respiratory failure. Chest 98:76S

    Google Scholar 

  72. Brochard L, Isabey D, Piquet J, et al (1990) Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. New Engl J Med 323:1523–1530

    Article  PubMed  CAS  Google Scholar 

  73. Skaburskis M, Helal R, Zidulka A (1987) Effects of external continuous negative pressure ventilation (CNPV) compared to continuous positive pressure ventilation (CPPV) in dogs with acute lung injury. Am Rev Respir Dis 136:886–891

    Article  PubMed  CAS  Google Scholar 

  74. Morris AH, Elliott G (1985) Adult respiratory distress syndrome: successful support with continuous negative extrathoracic pressure. Crit Care Med 13:989–990

    Article  PubMed  CAS  Google Scholar 

  75. Hill NS (1986) Clinical application of body ventilators. Chest 90:897–905

    Article  PubMed  CAS  Google Scholar 

  76. Scharf SM, Feldman NT, Goldman MD, Haut HZ, Bruce E, Ingram RHM (1978) Vocal cord closure: a cause of upper airway obstruction during controlled ventilation. Am Rev Respir Dis 117:391–397

    PubMed  CAS  Google Scholar 

  77. Gottfried SB, Simkovitz P, Skaburskis M (1987) Effect of constant negative extrathoracic pressure on breathing pattern and respiratory muscle function in severe COPD. Am Rev Respir Dis 135: A202

    Google Scholar 

  78. Gottfried SB, Simkovitz P, Skaburskis M (1987) Effect of constant positive airway pressure on breathing pattern and respiratory muscle function in chronic obstructive pulmonary disease. Chest 92:127

    Google Scholar 

  79. Brown DG, Pierson DJ (1986) Auto-PEEP is common in mechanically ventilated patients: a study of incidence, severity, and detection. Respir Care 31:1069–1074

    Google Scholar 

  80. Benson MS, Pierson DJ (1988) Auto-PEEP during mechanical ventilation of adults. Respir Care 33:557–565

    Google Scholar 

  81. Martin JG, Shore S, Engel LA (1982) Effect of continuous positive airway pressure on respiratory mechanics and pattern of breathing in induced asthma. Am Rev Respir Dis 126:812–817

    PubMed  CAS  Google Scholar 

  82. Paton JY, Swaminathan S, Sargent CW, Keens TG (1989) Expiratory muscle endurance and the oxygen cost of expiration in normal adults. Am Rev Respir Dis 139:A345

    Google Scholar 

  83. Petrof BJ, Calderini E, Gottfried SB (1990) Effect of CPAP on respiratory effort and dyspnea during exercise in severe COPD. J Appl Physiol 69:179–188

    PubMed  CAS  Google Scholar 

  84. Druz WS, Sharp JT (1981) The activity of respiratory muscles in upright and recumbent man. J Appl Physiol 51:1552–1561

    PubMed  CAS  Google Scholar 

  85. Begle RL, Skatrud JB, Dempsey JA (1987) Ventilatory compensation for changes in functional residual capacity during sleep. J Appl Physiol 62:1299–1306

    PubMed  CAS  Google Scholar 

  86. DiMarco AF, DiMarco MS, Strohl KP, Altose MD (1984) Effects of expiratory threshold loading on thoracoabdominal motion in cats. Respir Physiol 57:247–257

    Article  PubMed  CAS  Google Scholar 

  87. Gottfried SB, Milic-Emili J (1986) Non-invasive monitoring of respiratory system mechanics. In: Cherniack NS, Nochomovitz M (eds) Non-invasive respiratory monitoring. Churchill Livingston, New York, pp 59–82

    Google Scholar 

  88. Duncan SR, Rizk NW, Raffin TA (1987) Inverse ratio ventilation, PEEP in disguise? Chest (letter) 92:390–392

    CAS  Google Scholar 

  89. Solway J, Rössing T, Saari A, et al (1986) Expiratory flow limitation and dynamic pulmonary hyperinflation during high frequency ventilation. J Appl Physiol 60:2071–2076

    PubMed  CAS  Google Scholar 

  90. Kacmarek RM, Meklaus MD (1990) The new generation of mechanical ventilators. Crit Care Clin 6:551–578

    PubMed  CAS  Google Scholar 

  91. Reissmann H, Ranieri VM, Gottfried SB (1991) A simple method for the measurement of intrinsic PEEP during controlled and assisted modes of mechanical ventilation, (in press)

    Google Scholar 

  92. Hoffman RA, Ershowsky P, Kreiger BP (1989) Determination of auto-PEEP during spontaneous and controlled ventilation by monitoring changes in end-expiratory thoracic gas volume. Chest 96:613–616

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottfried, S.B. (1991). The Role of PEEP in the Mechanically Ventilated COPD Patient. In: Marini, J.J., Roussos, C. (eds) Ventilatory Failure. Update in Intensive Care and Emergency Medicine, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84554-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84554-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84556-7

  • Online ISBN: 978-3-642-84554-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics