Advertisement

Anatomische, biochemische und funktionelle Strukturen physiologischer Neurotransmitter-Regelkreise

  • M. Gerlach
  • W. Gsell
  • P. Riederer
Part of the Tropon-Symposium VI book series (BAYERZNS, volume 6)

Zusammenfassung

Neuroanatomische Studien, die mit entsprechenden Tierexperimenten gekoppelt waren, sowie Untersuchungen und Beobachtungen über die Auswirkungen von Gehirnverletzungen, elektrischen Reizungen und neurochirurgischen Eingriffen führten zu einer Kartierung der Funktionen im menschlichen Gehirn. Man geht heute davon aus, daß das Gehirn sowohl fokal (also mit klar abgegrenzten Zentren) als auch diffus organisiert ist — je nachdem, welche Funktionen man untersucht (zur Übersicht: McGeer et al. 1987). Sensorische und motorische Grundfunktionen werden von sehr spezifischen Regionen kontrolliert, während die höheren geistigen Funktionen mehrere über das Gehirn verteilte Bereiche beanspruchen. Auf zellulärer und molekularer Ebene erfolgt die Informationsübertragung über ein neuronales Netzwerk mit verschiedenen Neurotransmittersystemen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1990) Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington’s disease. N Engl J Med 332:1293–1298CrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedCrossRefGoogle Scholar
  4. Andersen PH, Jansen JA (1990) Dopamine receptor agonists: selectivity and dopamine Di receptor efficacy. Eur J Pharmacol 188:335–347PubMedCrossRefGoogle Scholar
  5. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455PubMedCrossRefGoogle Scholar
  6. Birkmayer W (1969) Der Alpha-Methyl-P-Tyrosin-Effekt bei extrapyramidalen Erkrankungen. Wien Klin Wochenschr 81:10–12PubMedGoogle Scholar
  7. Burns RS, Chiueh CC, Markey SP, Eberth MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550PubMedCrossRefGoogle Scholar
  8. Carlsson A, Lindquist M, Magnusson T (1957) 2,3-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200PubMedCrossRefGoogle Scholar
  9. Carpenter MB, Carpenter CS (1951) Analysis of somatotopic relations of the corpus Luysii in man and monkey. Relation between the site of dyskinesia and distribution of lesions within the subthalamic nucleus. J Comp Neurol 95:349–351Google Scholar
  10. Chevalier G, Vacher S, Deniau JM, Desban M (1985) Disinhibition as a basic process in the expression of striatal function. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurones. Brain Res 334:215–226PubMedCrossRefGoogle Scholar
  11. Crossman AR (1987) Primate models of dyskinesias: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40PubMedCrossRefGoogle Scholar
  12. Crossman AR, Sambrook MA, Jackson AJ (1984) Experimental hemichorea/hemiballism in monkey. Brain 107:579–596PubMedCrossRefGoogle Scholar
  13. Crossman AR, Mitchell IJ, Jackson AJ, Sambrook MA (1988) Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex: the site of drug action and a hypothesis of the neural mechanisms of chorea. Brain 111:1211–1233PubMedCrossRefGoogle Scholar
  14. Crout JR (1961) The inhibition of catechol-O-methyltransferase by pyrogallol in the rat. Biochem Pharmacol 6:47–54PubMedCrossRefGoogle Scholar
  15. Dawborn D, de Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease. Brain Res 411:251–260CrossRefGoogle Scholar
  16. DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchel SJ, Richardson RT (1984) Role of basal ganglia in limb movements. Human Neurobiol 2:235–244Google Scholar
  17. Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of ventromedial thalamic nucleus. Brain Res 334:227–233PubMedCrossRefGoogle Scholar
  18. Ferrante RJ, Kowall NW, Beal MF, Richardson EP jr, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563PubMedCrossRefGoogle Scholar
  19. Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176PubMedCrossRefGoogle Scholar
  20. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11PubMedCrossRefGoogle Scholar
  21. Fonnum F, Soreide A, Kvale I, Walker J, Walaas I (1981) Glutamate in cortical fibres. In: DiChiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp 29–41Google Scholar
  22. Gibb WRG, Terruli M, Lees AJ, Jenner P, Marsden CD (1989) The evolution and distribution of morphological changes in the nervous system of the common marmoset following the acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Mov Disord 4:53–74PubMedCrossRefGoogle Scholar
  23. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRefGoogle Scholar
  24. Graybiel AM, Ragsdale CW (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 427–504Google Scholar
  25. Heidmann T, Changeux JP (1978) Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Ann Rev Biochem 47:317–357PubMedCrossRefGoogle Scholar
  26. Hucho F (Hrsg) (1982) Einführung in die Neurochemie. Verlag Chemie, WeinheimGoogle Scholar
  27. Hunt P, Kannengiesser MH, Raynaud JP (1974) Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J Pharm Pharmacol 26:370–371PubMedCrossRefGoogle Scholar
  28. Jakob H, Beckmann H (1986) Prenatal development disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326PubMedCrossRefGoogle Scholar
  29. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297PubMedCrossRefGoogle Scholar
  30. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382PubMedCrossRefGoogle Scholar
  31. Kinemuchi H, Fowler C, Tipton KF (1987) The neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) and its relevance to Parkinson’s disease. Neurochem Int 11:359–373PubMedCrossRefGoogle Scholar
  32. Kitai ST, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MM, Jayaraman A (eds) The basal ganglia II, structure and function: current concepts. Plenum Press, New York (Advances in behavioral biology, Vol 31, pp 357–373)Google Scholar
  33. Knoll J (1986) The pharmacology of (-)-deprenyl. J Neural Transm [Suppl] 22:75–89Google Scholar
  34. Kornhuber HH, Kornhuber J, Kim JS, Kornhuber ME (1984) Zur biochemischen Theorie der Schizophrenie. Nervenarzt 55:602–606PubMedGoogle Scholar
  35. Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H] MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77:231–236PubMedCrossRefGoogle Scholar
  36. Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical transmitters. Trends Neurosci 6:325–333CrossRefGoogle Scholar
  37. Martin JB, Gusella JF (1986) Huntington’s disease: pathogenesis and management. N End J Med 315:1267–1276CrossRefGoogle Scholar
  38. McGeer PL, Sir Eccles JC, McGeer EG (eds) (1987) Molecular neurobiology of the mammalian brain, 2nd edn. Plenum Press, New YorkGoogle Scholar
  39. Miller WC, DeLong MR (1987) Altered tonic activity of neurones in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II, structure and function: current concepts. Plenum Press, New York (Advances in behavioral biology, Vol 32, pp 395-403)Google Scholar
  40. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA, Crossman AR (1989) Neural mechamisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Neuroscience 32:213–226PubMedCrossRefGoogle Scholar
  41. Mitchell PR, Doggett NS (1980) Modulation of striatal 3H-glutamic acid release by dopaminergic drugs. Life Sci 26:2073–2081PubMedCrossRefGoogle Scholar
  42. Mitchell R (1987) Molecular aspects of central neurotransmitter function. In: Flückinger E, Müller E, Thorner MO (eds) Basic and clinical aspects of neuroscience, Vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 1–9Google Scholar
  43. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917PubMedGoogle Scholar
  44. Nauta WJH, Domesick VB (1984) Afferent and efferent relationships of the basal ganglia. In: Evered D, O’Connor M (eds) Functions of the basal ganglia. Pitman, London, pp 3–23Google Scholar
  45. Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565PubMedGoogle Scholar
  46. Nieoullon A, Kerkerian L, Dusticier N (1982) Inhibitory effects of dopamine on high affinity glutamate uptake from rat striatum. Life Sci 30:1165–1172PubMedCrossRefGoogle Scholar
  47. Penney JB, Young AB (1981) GAB A as the pallidothalamic neurotransmitter: implications for basal ganglia function. Brain Res 207:195–199PubMedCrossRefGoogle Scholar
  48. Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes. Annu Rev Neurosci 11:45–60PubMedCrossRefGoogle Scholar
  49. Phelps PA, Houser CR, Vaughn JE (1985) Immunocytochemical localizaton of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 238:286–307PubMedCrossRefGoogle Scholar
  50. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington’s disease. Proc Natl Acad Sci USA 85:5733–5737PubMedCrossRefGoogle Scholar
  51. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 39:277–301CrossRefGoogle Scholar
  52. Roos RAC (1986) Neuropathology of Huntington’s chorea. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Extrapyramidal disorders. Elsevier, New York (Handbook of clinical neurology, Vol 49, pp 315-326)Google Scholar
  53. Russ H, Mihatsch W, Gerlach M, Riederer P, Przuntek H (1991) Neurochemical and behavioural features induced by chronic low dose treatment with l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in the common marmoset: implications for Parkinson’s disease. Neurosci Lett 123:115–118PubMedCrossRefGoogle Scholar
  54. Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205:723–725PubMedCrossRefGoogle Scholar
  55. Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356PubMedCrossRefGoogle Scholar
  56. Wagner GC, Seiden LS, Schuster CR (1979) Methamphetamine-induced changes in brain catecholamines in rats and guinea pigs. Drug Alcohol Dep 4:435–438CrossRefGoogle Scholar
  57. Walker FO, Young AB, Penney JB, Dorovini-Zis K, Shoulson I (1984) Benzodiazepine and GABA receptors in early Huntington’s disease. Neurology 34:1237–1240PubMedGoogle Scholar
  58. Young AB, Penney JB (1988) Biochemical and functional organization of the basal ganglia. In: Jankovic J, Tolosa E (eds) Parkinsons’s disease and movement disorders. Urban & Schwarzenberg, München, pp 1–11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Gerlach
  • W. Gsell
  • P. Riederer

There are no affiliations available

Personalised recommendations