Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 68))

  • 98 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tong, P., New Displacement Hybrid Finite Element Models for Solid Continua, Int. J. Num. Meth. Eng., vol. 2, 1970, pp. 73–83.

    Article  MATH  Google Scholar 

  2. Rayleigh, J. W., The Theory of Sound, Dover, New York, 1945.

    MATH  Google Scholar 

  3. Ritz W., Uber eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, J. reine angew. Math., vol. 135, 1908, pp. 1–61.

    MATH  Google Scholar 

  4. Ritz W., Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern, Annalen der Physik, vol. 38, 1909, pp. 737–786.

    Article  ADS  Google Scholar 

  5. Courant, Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bull. Am. Math. Soc., vol. 49, 1943.

    Google Scholar 

  6. Hellinger, E., Die allgemeinen Ansätze der Mechanik der Kontinua, Enz. math. Wis., vol. 4, 1914, pp. 602–694.

    Google Scholar 

  7. Reissner, E., On a Variational Theorem in Elasticity, J. Math. Phys., vol. 29, 1950, pp. 90–95.

    MATH  MathSciNet  Google Scholar 

  8. Hu, H. C. On some Variational Principles in the Theory of Elasticity and the Theory of Plasticity, Scientia Sinica, vol. 4, 1955, pp. 33–54.

    MATH  Google Scholar 

  9. Washizu, K., On the Variational Principles of Elasticity and Plasticity, Tech. Rept. 25–18, Cont. N5ori-07833, MIT, March 1955.

    Google Scholar 

  10. Nemat-Nasser, S., General Variational Principles in Nonlinear and Linear Elasticity with Applications, Mechanics Today, vol. 1, 1972, pp. 214–261.

    Google Scholar 

  11. Prager, W., Variational Principles of Linear Elastostatics for Discontinuous Displacements, Strains and Stresses, Recent Progress in Applied Mechanics, The Folke-Odqvist Volume (B. Broberg, J. Hult and F. Niordson Eds.), Almqvist and Wiksell, Stockholm, 1967, pp. 463–474.

    Google Scholar 

  12. Prager, W., Variational Principles for Elastic Plates with Relaxed Continuity Requirements, International Journal of Solids and Structures, vol. 4, no. 9, 1968 pp. 837–844.

    Article  MATH  Google Scholar 

  13. Washizu, K., Variational Methods in Elasticity and Plasticity, Pergamon Press, 1982.

    Google Scholar 

  14. Argyris, J.H. and Kelsey, S., Energy Theorems and Structural Analysis, Butterworth, London, 1960.

    Google Scholar 

  15. Turner, M.J., Clough, R. W., Martin, H.C. and Topp, L. J.: Stiffness and Deflection Analysis of Complex Structures, J. Aeron. Sci., vol. 23, no. 9, 1956, pp. 805–824.

    MATH  Google Scholar 

  16. Melosh, R. J., Basis for Derivation of Matrices for the Direct Stiffness Method, J. Am. Inst. Aeron. Astron., vol. 1. no. 7, 1963, pp. 1631–1637.

    Google Scholar 

  17. Jones, R. E., Generalization of the Direct Stiffness Method of Structural Analysis, J. Am. Inst. Aeron. Astron., vol. 2, 1964, pp. 821–826.

    MATH  Google Scholar 

  18. Pian, T. H. H., Derivation of Element Stiffness Matrices, J. Am. Inst. Aeron. Astron., vol. 2, 1964, pp. 576–577.

    Google Scholar 

  19. Pian, T. H. H., Reflections and Remarks on Hybrid and Mixed Finite Element Methods, Hybrid and Mixed Finite Element Methods, Chapter 29 (S. N. Atluri, R. H. Gallagher and O. C. Zienkiewicz Eds.), John Wiley and Sons Ltd, 1983.

    Google Scholar 

  20. Martin, H. C and Carey, G. F., Introduction to Finite Element Analysis Theory and Application, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  21. Pian, T. H. H., Basis of Finite Element for Solid Continua, Int. J. Num. Meth. Eng., vol. 1, 1969, pp. 3–28.

    Article  MATH  Google Scholar 

  22. Pian, T. H. H. and Tong, P., Mixed and Hybrid Finite Element Methods, Finite Element Handbook, Chapter 5, part 2 (H. Kardestuncer and D. H. Norrie Eds.), McGraw-Hill, New York, 1987.

    Google Scholar 

  23. Noor, A. K., Multifield (Mixed and Hybrid) Finite Element Models, State-of-the-Art Surveys on Finite Element Technology, Chapter 5 (A. K. Noor and W. D. Pilkey Eds.), ASME, New York, 1983.

    Google Scholar 

  24. Fredholm, I. Sur une Classe d’Equation Fonctionelles, Acta Math., vol.27, 1903, pp. 365–390.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kellogg, O. D., Foundations of Potential Theory, Dover, New York, 1953.

    MATH  Google Scholar 

  26. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen, 1953.

    MATH  Google Scholar 

  27. Kupradze, O. D., Potential Methods in the Theory of Elasticity, Daniel Davey and Co., New York, 1965.

    MATH  Google Scholar 

  28. Hess, J. L. and Smith, A. M. O., Calculation of Potential Flow about Arbitrary Bodies, Progress in Aeronautical Sciences, vol. 8 (D. Kuchemann Ed.), Pergamon Press, 1967.

    Google Scholar 

  29. Jaswon, M. A. and Ponter, A. R. S., An Integral Equation Solution of the Torsion Problem, Proc. Roy. Soc. A, vol. 273, 1963, pp. 237–246.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Jaswon, M. A., Integral Equation Methods in Potential Theory, I, Proc. Roy. Soc. A, vol. 275, 1963, pp. 23–32.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Symm, G. T., Integral Equation Methods in Potential Theory, II, Proc. Roy. Soc. A, vol. 275, 1963, pp. 33–46.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Massonnet, C. E., Numerical Use of Integral Procedures in Stress Analysis, Stress Analysis, (O. C. Zienkiewicz and G. S. Holister Eds.), Wiley, 1966.

    Google Scholar 

  33. Rizzo, F. J. An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics, Quart. App. Math., vol. 25, 1967, pp. 83–95.

    MATH  Google Scholar 

  34. Cruse, T. A., Numerical Solutions in Three Dimensional Elastostatics, Int. J. Solids Structures, vol. 5, 1969, pp. 1259–1274.

    Article  MATH  Google Scholar 

  35. Rizzo, F. J, and Shippy, D. J., A Method for Stress Determination in Plane Anisotropic Elastic Bodies, J. Composite Materials, vol.4, 1970, pp. 36–60.

    Article  Google Scholar 

  36. Cruse, T. A. and Rizzo, F. J., A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem, I, J. Math. Analysis and Applications, vol. 22, 1968, pp. 244–259.

    Article  MATH  Google Scholar 

  37. Cruse, T. A., A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem, II, J. Math. Analysis and Applications, vol. 22, 1968, pp.341–355.

    Article  MATH  Google Scholar 

  38. Cruse, T. A., Application of the Boundary Integral Equation Method to Three Dimensional Stress Analysis, Computer and Structures, vol 3., 1973, pp. 509–527.

    Article  Google Scholar 

  39. Brebbia, C. A. and Dominguez, J., Boundary Element Method for Potential Problems, Appl. Math. Modelling, vol. 1, 1977, pp. 372–378.

    Article  MATH  MathSciNet  Google Scholar 

  40. Brebbia, C. A, The Boundary Element Method for Engineers, Pentech Press, London, Halstead Press, New York, 1978.

    Google Scholar 

  41. Felippa, C. A., Parametrized Multifield Variational Principles in Elasticity: I. Mixed Funcionals, Communications in Applied Numerical Methods, vol. 5, 1989, pp. 79–88.

    Article  MATH  MathSciNet  Google Scholar 

  42. Felippa, C. A., Parametrized Multifield Variational Principles in Elasticity: II. Hybrid Funcionals and the Free Formulation Communications in Applied Numerical Methods, vol. 5, 1989, pp. 89–98.

    Article  MATH  MathSciNet  Google Scholar 

  43. McDonald, B. H., Friedman, M. and Wexler, A., Variational Solution of Integral Equations, IEEE Trans. Microwave Theory Tech., vol. MTT-22, 1974, pp. 237–248.

    Article  ADS  MathSciNet  Google Scholar 

  44. Jeng, G. and Wexler, A., Isoparametric, Finite Element, Variational Solution of Integral Equations for Three-Dimensional Fields, Int. J. Num. Meth. Eng., vol. 11, 1977, pp. 1455–1471.

    Article  MATH  Google Scholar 

  45. Jeng, G. and Wexler, A., Self Adjoint Variational Formulation of Problems Having Non-Self-Adjoint Operators, IEEE Trans. Microwave Theory Tech., vol. MTT-26, 1978, pp. 91–94.

    Article  ADS  MathSciNet  Google Scholar 

  46. Hsiao, G. C., Kopp, P. and Wendland, W. L., The Synthesis of the Collocation and the Galerkin Method Applied to Some Integral Equations of the First Kind, New Developments in Boundary Element Methods, CMC Publication, Southampton, England, 1980, pp. 122–136.

    Google Scholar 

  47. Wendland, W. L., On the Asymptotic Convergence of Boundary Integral Methods, Boundary Element Methods, Proc. 3rd Int. Seminar on BEM in Engineering (C. A. Brebbia Ed.), Southampton, England, 1981.

    Google Scholar 

  48. Wendland, W. L., Asymptotic Accuracy and Convergence, Progress in Boundary Element Methods (C. A. Brebbia Ed.), Pentech Press, London, vol. 1, 1981, pp. 289–313.

    Google Scholar 

  49. Nedelec, J. C., Integral Equations with Non-Integrable Kernels, Integral Equations and Operator Theory, vol. 5, 1982, pp. 562–572.

    Article  MATH  MathSciNet  Google Scholar 

  50. Arnold, D. N. and Wendland, W. L., Collocation versus Galerkin Procedures for Boundary Integral Methods, Boundary Element Methods in Engineering, Proc. 4rd Int. Seminar on BEM in Engineering (C. A. Brebbia Ed.), Southampton, England, 1

    Google Scholar 

  51. Polizzotto, C., A BEM Approach to the Bounding Techniques, Boundary Elements VII (C. A. Brebbia Ed.), Springer-Verlag, Berlin, 1985, pp. 13/103-114.

    Google Scholar 

  52. Maier, G. and Polizzotto, C., A Galerkin Approach to Elastoplastic Analysis by Boundary Elements, Comput. Meth. Appl. Mech. Eng., vol. 60, 1987, pp. 175–194.

    Article  MATH  Google Scholar 

  53. Onishi, K., Heat Conduction Analysis Using Single Layer Heat Potential, Boundary Element Methods in Applied Mechanics (M. Tanaka and T. A. Cruse Eds.), Pergamon Press, 1988.

    Google Scholar 

  54. Dumont, N. A., The Variational Formulation of the Boundary Element Method, Boundary Element Techniques: Applications in Fluid Flow and Computational Aspects (C. A. Brebbia and W. S. Venturini Eds.), Computational Mechanics Publications, Southampton, 1987.

    Google Scholar 

  55. Dumont, N. A., The Hybrid Boundary Element Method, Boundary Elements IX (C. A. Brebbia, W. L. Wendland and G. Kuhn Eds.), vol. 1, Springer-Verlag, Berlin, 1987, pp. 117–130.

    Google Scholar 

  56. DeFigueiredo, T.G.B. and Brebbia, C.A., A Hybrid Displacement Variational Formulation of BEM, Boundary Elements X (C.A. Brebbia Ed.), vol. 1, Computational Mechanics Publications, Southampton, Springer-Verlag, Berlin, 1988, pp. 33–42.

    Google Scholar 

  57. DeFigueiredo, T.G.B. and Brebbia, C.A., A New Hybrid Displacement Variational Formulation of BEM for Elastostatics, Advances in Boundary Elements (C.A. Brebbia and J.J. Connor Eds.), vol. 1, Computational Mechanics Publications, Southampton, Springer-Verlag, Berlin, 1989, pp. 47–57.

    Google Scholar 

  58. Polizzotto, C., A Consistent Formulation of the BEM within Elastoplasticity, Advanced Boundary Element Methods (T. A. Cruse Ed.), Springer-Verlag, Berlin, 1987, pp. 315–324.

    Google Scholar 

  59. Polizzotto, C. and Zito, M., A Variational Approach to Boundary Element Methods, Boundary Element Methods in Applied Mechanics (M. Tanaka and T. A. Cruse Eds.), Pergamon Press, Oxford, 1988.

    Google Scholar 

  60. Felippa, C. A., A Parametric Representation of Symmetric Boundary Finite Elements, Topics in Engineering vol. 7 (M. Tanaka and R. Shaw Eds.), Computational Mechanics Publications, 1990.

    Google Scholar 

  61. Jaswon, M. A. and Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977.

    MATH  Google Scholar 

  62. Rao, S. S. The Finite Element Method in Engineering, Pergamon Press, Oxford, 1982.

    MATH  Google Scholar 

  63. Huebner, K. H., The Finite Element Method for Engineers, John Wiley and Sons, New York, 1975.

    Google Scholar 

  64. Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C., Boundary Element Techniques, Springer Verlag, Berlin, 1984.

    MATH  Google Scholar 

  65. Brebbia,C. A. and Dominguez, J., Boundary Elements An Introductory Course, Computational Mechanics Publications, Southampton and McGraw-Hill, New York, 1989.

    MATH  Google Scholar 

  66. Kaplan, W., Advanced Mathematics for Engineers, Addison-Wesley, Reading — Massachussets, 1981.

    MATH  Google Scholar 

  67. Stroud, A. H. and Secrest, D., Gaussian Quadrature Formulas, Prentice-Hall, New York, 1966.

    Google Scholar 

  68. Telles, J. C. F., A Self-Adaptive Coordinate Transformation for Efficient Numerical Evaluation of General Boundary Element Integrals, Int. J. Num. Meth. Eng., vol. 24, 1987, pp. 969–973.

    Article  Google Scholar 

  69. Telles, J. C. F., The Boundary Element Method Applied to Inelastic Problems (C. A. Brebbia and S. A. Orzag Eds.), Springer-Verlag, Berlin, 1983.

    Google Scholar 

  70. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944.

    MATH  Google Scholar 

  71. Melan, E., Der Spannungszustand der durch eine Einzerkraft im Innern beanspruchten Halbscheibe, Z. Angew. Math. Mech., vol. 12, 1932, pp. 343–346.

    Article  MATH  Google Scholar 

  72. Midlin, R. D., Force at a Point in the Interior of a Semi-infinite Solid, Physics, vol. 7, 1936, pp. 195–202.

    Article  ADS  Google Scholar 

  73. Georgiou, P., The Coupling of the Direct Boundary Element Method with the Finite Element Displacement Technique in Elastostatics, PhD Thesis, University of Southampton, England, 1981.

    Google Scholar 

  74. Tulberg, O. and Bolteus, L., A Critical Study of Different Boundary Element Stiffness Matrices, Proc. 4th Int. Seminar on BEM in Engineering (C. A. Brebbia Ed.), Southampton, England, 1982.

    Google Scholar 

  75. Kutt, H. R., The Numerical Evaluation of Principal Value Integrals by Finite Part Integration, Numer. Math., vol. 24, 1975, pp. 205–210.

    Article  MATH  MathSciNet  Google Scholar 

  76. Kutt, H. R., Quadrature Formulae for Finite Part Integrals, Report WISK 178, The National Research Institute for Mathematical Sciences, Pretoria, 1975.

    Google Scholar 

  77. Rizzo, F. J, and Shippy, D. J., An Advanced Boundary Integral Equation Method for Three Dimensional Thermoelasticity, Int. J. Num. Meth. Eng., vol. 11, 1977, pp. 1753–1768.

    Article  MATH  Google Scholar 

  78. Stippes, M. and Rizzo, F. J., A Note on the Body Forces Integral of Classical Elastostatics, Z. Angew. Math. Phys., vol. 28, 1977, pp. 339–341.

    Article  MATH  Google Scholar 

  79. Danson, D. J., A Boundary Element Formulation of problems in Linear Isotropic Elasticity with Body Forces, Boundary Element Methods (C. A. Brebbia Ed.), Springer-Verlag, Berlin, 1981, pp. 105–122.

    Google Scholar 

  80. Telles, J. C. F. and Brebbia, C. A., The Boundary Element Method in Plasticity, New Developments in Boundary Element Methods (C. A. Brebbia Ed.), CML Publications, Southampton, 1980, pp. 295–317

    Google Scholar 

  81. Telles, J. C. F. and Brebbia, C. A., The Boundary Element Method in Plasticity, Appl. Math. Modelling, vol. 5, 1981, pp.275–281.

    Article  MATH  MathSciNet  Google Scholar 

  82. Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, N. J., 1969.

    Google Scholar 

  83. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N. J., 1965.

    Google Scholar 

  84. Cruse, T. A., Mathematical Foundations of the Boundary Integral Equation Method in Solid Mechanics, Report No. AFOSR-TR-77-1002, Pratt and Witney Aircraft Group, 1977.

    Google Scholar 

  85. Cruse, T. A., Boundary Integral Equation Method for Three-dimensional Elastic Fracture Mechanics, Report No. AFOSR-TR-75-0813, Pratt and Witney Aircraft Group, 1975.

    Google Scholar 

  86. Paula, F. A., Obtenção de Matriz de Rigidez Utilizando o Método dos Elementes de Contorno, MSc. Thesis, COPPE/UFRJ, Rio de Janeiro, Brazil, 1986 (in Portuguese).

    Google Scholar 

  87. Fairweather, G. et al., On the Numerical Solution of Two-Dimensional Potential Problems: an Improved Boundary Integral Equation Method, J. of Computational Physics, vol. 31, 1979, pp. 96–112.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  88. Greenspan, D., Introductory Numerical Analysis of Elliptic Boundary Value Problems, Harper & Row, New York, 1965.

    MATH  Google Scholar 

  89. Papamichael, N. and Symm, G. T., Numerical Techniques for Two-Dimensional Laplacian Problems, Comput. Meth. Appl. Mech. Eng., vol. 6, 1975, pp. 175–194.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, McGraw-Hill, 1982.

    Google Scholar 

  91. Roark, R.J. and Young, W.C., Formulas for Stress and Strain, McGraw-Hill, London, 1975.

    Google Scholar 

  92. Tong, P., Basis of Finite Element Methods for Solid Continua, Int. J. Num. Meth. Eng., vol. 1, 1969, pp. 3–28.

    Article  MATH  Google Scholar 

  93. Mangier, K. W., Improper Integrals in Theoretical Aerodynamics, Report No: Aero.2424, Royal Aircraft Establishment, 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

DeFigueiredo, T.G.B. (1991). Bibliography. In: A New Boundary Element Formulation in Engineering. Lecture Notes in Engineering, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84504-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84504-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54030-4

  • Online ISBN: 978-3-642-84504-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics