Advertisement

Anatomy and Biomechanics of the Anterior Cruciate Ligament: A Three-Dimensional Problem

  • R. Huiskes
  • L. Blankevoort
Chapter

Abstract

The cruciate ligaments perform the contrasting functions of permitting motion of the articular surfaces on the one hand, and restraining their motion on the other by offering resistance to certain forces. The excessive restraint of mobility leads to functional disability and unphysiologic loading of the ligaments, whereas deficient restraint leads to instability. The anterior cruciate ligament (ACL) plays a critical role in the performance of this task. This role is determined entirely by the anatomic configuration of the ligament attachments and the mechanical properties of the ligament itself. In turn, the mechanical properties of the ACL depend on its three-dimensional collagenous structure. These interdependencies are of clinical importance. In knee laxity tests, for example, an attempt is made to assess the function of the ACL and diagnose the severity of lesions on the basis of observed or elicited joint motion. In reconstructions of the ACL, an attempt is made to repair the lesion to the degree that normal motion restraint is reestablished.

Keywords

Anterior Cruciate Ligament Cruciate Ligament External Rotation Posterior Cruciate Ligament Flexion Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed AM, Hyder A, Burke DL, Chan KH (1987) In-vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res 5: 217–230PubMedCrossRefGoogle Scholar
  2. Andriacchi TP, Mikosz RP, Hampton SJ, Galante JO (1983) Model studies of the stiffness characteristics of the human knee joint. J Biomech 16: 23–29PubMedCrossRefGoogle Scholar
  3. Blankevoort L, Huiskes R (1987 a) The effects of ACL substitute location on knee joint motion and cruciate ligament strains. Orthop Trans 11/2: 350Google Scholar
  4. Blankevoort L, Huiskes R (1988) The interaction between articular geometry and cruciate ligament function in the knee joint. Proceedings of the sixth meeting of the European Society of Biomechanics, University of Bristol, EnglandGoogle Scholar
  5. Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a threedimensional model of the knee. J Biomech Eng 113: (in press)Google Scholar
  6. Blankevoort L, Huiskes R, Lange A de (1988) The envelope of passive knee joint motion. J Biomech 21: 705–721PubMedCrossRefGoogle Scholar
  7. Blankevoort L, Huiskes R, de Lange A (1990) Helical axes of passive knee-joint motions. J Biomechanics 23:1219–1229CrossRefGoogle Scholar
  8. Blankevoort L, Huiskes R, de Lange A (1991a) Recruitment of knee joint ligaments. Biomech Eng 113:94–103CrossRefGoogle Scholar
  9. Blankevoort L, Kuiper JH, Huiskes R, Grootenvoer HJ (1991b) Articular contact in a three-dimensional model of the knee. J Biomechanics 24: (in press)Google Scholar
  10. Butler DL, Stouffer DC, Wukusick PM, Zernicke RF (1983) Analysis of non homogeneous strain response of human patellar tendon. ASME Biomechanics Summer Symposium 1983, American Society for Mechanical Engineers, New York, pp 129–132Google Scholar
  11. Butler DL, Kay MD, Stouffer DC (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 19: 425–432PubMedCrossRefGoogle Scholar
  12. Daniel DM, Malcolm LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg [Am] 67: 720–726Google Scholar
  13. Dijk R van (1983) The behavior of the cruciate ligaments in the knee. Dissertation, University of NijmegenGoogle Scholar
  14. Dijk R van, Huiskes R, Selvik G (1979) Roentgen stereophotogrammetric methods for the evaluation of the threedimensional kinematic behavior and cruciate ligament length patterns of the human knee joint. J Biomech 12: 727–731PubMedCrossRefGoogle Scholar
  15. Edixhoven P, Huiskes R Graaf A de (1989) Anteroposterior drawer measurements in the knee using an instrumented test device. Clin Orthop 247: 232–242PubMedGoogle Scholar
  16. Edixhoven P, Huiskes R, Graaff R de, Rens TJG van, Slooff TJ (1987) Accuracy and reproducibility of instrumented knee-drawer tests. J Orthop Res 5: 378–387PubMedCrossRefGoogle Scholar
  17. Essinger JR (1986) NEJ: a numerical model for the investigation and the analysis of knee prostheses. Dissertation, École Poly technique Federale de LausanneGoogle Scholar
  18. Galway RD, Beaupre A, Macintosh DL (1972) Pivot shift: a clinical sign of symptomatic anterior cruciate ligament insufficiency. J Bone Joint Surg [Br] 54: 763–764Google Scholar
  19. Hefzy MS, Grood ES (1986) Sensitivity of insertion loctions on length patterns of anterior cruciate ligament fibers. J Biomech Eng 108: 73–82PubMedCrossRefGoogle Scholar
  20. Huiskes R, Kremers J, Lange A de, Woltring HJ, Selvik G, Rens TJG van (1985a) Analytical stereophotogrammetric determination of three-dimensional knee-joint geometry. J Biomech 18: 559–570PubMedCrossRefGoogle Scholar
  21. Huiskes R, Dijk R van, Lange A de, Woltring HJ, Rens TJG van (1985b) Kinematics of the human knee joint. In: Berme N, Engin AE, Correia da Silva KM (eds) Biomechanics of normal and pathological human articulating joints. Nijhoff, Dordrecht Boston Lancaster, pp 165–188Google Scholar
  22. Huson A (1974) Biomechanische Probleme des Kniegelenks. Orthopädie 3: 119–126Google Scholar
  23. Lange A de, Kauer JMG, Huiskes R (1985) Kinematic behavior of the human wrist joint: a Roentgen-stereophotogrammetric analysis. J Orthop Res 3: 56–64PubMedCrossRefGoogle Scholar
  24. Lewis JL, Lew WD, Schmidt J (1982) A note on the application and evaluation of the buckle transducer for knee ligament force measurement. J Biomech Eng 104: 125–128PubMedCrossRefGoogle Scholar
  25. Meijer RCMB, Huiskes R, Kauer JMG (1987) Mechanische Belastung im Sport. In: Huiskes R (Hrsg) Biomechanica -Aspekte des Bewegungsapparats. Stafleu, Alphen aan den Rijn Brussel, S 9–27Google Scholar
  26. Meijer RCMB, Huiskes R, Kauer JMG (1989) A stereophotogrammetric method for measurements of ligament structure. J BiomechGoogle Scholar
  27. Menschik A (1974) Mechanik des Kniegelenks, Teil1. Z Orthop 112: 481–495PubMedGoogle Scholar
  28. Muller We (1982) Das Knie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys. J Bone Joint Surg [Am] 58: 1074–1082Google Scholar
  30. Rens TJG van, Berg AF van den, Huiskes R, Kuypers W (1986) Substitution of the anterior cruciate ligament: a long-term histologic and biomechanical study with autogenous pedicled grafts of the iliotibial band in dogs. J Arthroscopic Rei Surg 2: 139–154CrossRefGoogle Scholar
  31. Selvik G (1974) A Roentgen stereophotogrammetric method for the study of the kinematics of the skeletal system. Dissertation, University of LundGoogle Scholar
  32. Sidles JA, Larson RV, Garbini JL, Downey DJ, Matsen III FA (1988) Ligament length relationships in the moving knee. J Orthop Res 6: 593–610PubMedCrossRefGoogle Scholar
  33. Strasser H (1917) Lehrbuch der Muskel- und Gelenkmechanik. Springer, BerlinGoogle Scholar
  34. Wismans J, Veldpaus F, Janssen J, Huson A, Struben P (1980) A three-dimensional mathematical model of the knee-joint. J Biomech 13: 677–685PubMedCrossRefGoogle Scholar
  35. Woo SL-Y, Gomez MA, Seguchi Y, Endo CM, Akeson WH (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1: 22–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Huiskes
  • L. Blankevoort

There are no affiliations available

Personalised recommendations