Skip to main content

Summary

A robot system is considered which consists of two elastic links (bending and torsional deflection) and three fexible joints. This leads to six degrees of freedom (dof) for the rigid body motion of the system, three of which are assigned to the motor torque input. The remaining three dof. describe the gross motion of the system in space. They are superimposed by small elastic deflections which are calculated using a Ritz series approximation. The differential équations of the interconnected rigid body and elastic motion are highly nonlinear. The aim of the present investigation is to evaluate an optimal endpoint control (gripper movement) for a prescribed path in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Bobrow, S. Dubowsky, J. S. Gibson: Time-optimal Control of Robotic Manipulators Along Specified Paths. Int. J. Robot. Res., Vol. 4, 3–17, 1985.

    Article  Google Scholar 

  2. H. Brandi, R. Johanni, M. Otter: An Algorithm for the Simulation of Multibody Systems with Kinematic Loops, Proc. IFToMM Symp, Sevilla,1987.

    Google Scholar 

  3. H. Bremer: On the Dynamics of Flexible Manipulators. Proc. 2nd IEEE Conf. Robotics and Automation, Rayleigh/USA, 1556-1560, 1987.

    Google Scholar 

  4. H. Bremer: Über eine Zentralgleichung in der Dynamik, ZAMM 68, 307–311, 1988.

    Article  MATH  ADS  Google Scholar 

  5. H. Bremer: Dynamik und Regelung mechanischer Systeme, Teubner, Stuttgart, 1988.

    MATH  Google Scholar 

  6. G. Demaria, B. Siciliano: A Multilayer Approach to Control of a Flexible Arm. Proc. 2nd IEEE Conf. Robotics and Automation, Rayleigh/USA, 774-778, 1987.

    Google Scholar 

  7. S. Dubowsky, J. Maatuk: The Dynamic Analysis of Elastic Spatial Mechanisms. J. Mech. Eng., 927-932, 1975.

    Google Scholar 

  8. S. Dubowsky, Z. Shiller: Optimal Trajectories for Robotic Manipulators. Proc. 5th CISM-IFToMM Symp. on Theory and Practice of Robots and Manipulators, 1985.

    Google Scholar 

  9. T. Fukuda: Flexibility Control of Elastic Robot Arms. J. Robotic Syst., 73-88, 1985.

    Google Scholar 

  10. E. Freund, H. Hoyer: Das Prinzip nichtlinearer Systementkopplung mit Anwendung auf Industrieroboter. Regelungstechnik 18, 80–87 und 116-126, 1980.

    Google Scholar 

  11. B. Gebier: Modeling and Control of a Leightweight Robot, Proc. 2nd Europ. Space Mech. & Tribology Symp., ESA-SP-231, 59-64, 1985.

    Google Scholar 

  12. B. Gebier: Steuerung und Regelung für elastische Industrieroboter, Fortschrittberichte VDI, Reihe 11, Nr. 98, VDI-Verlag, Düsseldorf 1987.

    Google Scholar 

  13. B. Gebier, F. Pfeiffer: A Multistage Approach to the Dynamics and Control of Elastic Robots, Proc. of 1988 IEEE Conf. on Robotics and Automation, Philadelphia, PA.

    Google Scholar 

  14. G. Hamel: Theoretische Mechanik, Springer (1967).

    Google Scholar 

  15. M. Hiller, A. Kecskemethy: A Computer-Oriented Approach for the Automatic Generation and Solution of the Equations of Motion for Complex Mechanisms, Proc. 7th World Congr. Th. Mach. & Mech., Sevilla, 425-430, 1987.

    Google Scholar 

  16. R. Johanni: Automatisches Aufstellen der Bewegungsgleichungen von baumstrukturierten Mehrkörpersystemen mit elastischen Bauteilen, Lst. B f. Mech TUM, Diplomarbeit, 1984.

    Google Scholar 

  17. R. Johanni: On the Automatic Generation of the Equations of Motion for Robots with Elastically Deformable Arms. Proc. IFAC/IFIP/IMACS Int. Symp. on Theory of Robots, Wien, 1986.

    Google Scholar 

  18. R. Johanni: Optimale Bahnplanung bei Industrierobotern. Fortschr.-Ber. VDI-Z., Reihe 18, Nr. 51 (1988).

    Google Scholar 

  19. T.R. Kane, R.R. Ryan, A.K. Banerjee: Dynamics of a Cantilever Beam Attached to a Moving Base. J. Guidance, Vol. 10, No.2, 139–151, 1987.

    Article  Google Scholar 

  20. U. Kleemann: Dynamics and Control of a Robotic System with Elastic Arms, Proc. Int. Symp. Robotics and Manipulators, Albuquerque 1986.

    Google Scholar 

  21. U. Kleemann: Regelung elastischer Roboter, Fortschrittberichte VDI, Reihe 8, Nr. 191, VDI-Verlag, Düsseldorf 1989.

    Google Scholar 

  22. M. Mason: Compliance and Force Control for Computer Controlled Manipulators. IEEE Trans. Syst.,Man an Cybernetics, Vol. SMC-11, Nr. 6, 418–432, 1981.

    Article  Google Scholar 

  23. J.K. Mills, A.A. Goldenberg: Force and Position Control of Manipulators During Constrained Motion Tasks. IEEE Trans. Robotics and Automation, Vol. 5, Nr. 1, 1989.

    Google Scholar 

  24. S. Nicosia, P. Tomei, A. Tornambe: Dynamic Modelling of Flexible Manipulators. Proc. IEEE Conf. on Robotics and Automation, San Francisco/USA, 365-372, 1986.

    Google Scholar 

  25. F. Pfeiffer, E. Reithmeier: Roboterdynamik. Teubner (1987).

    Google Scholar 

  26. F. Pfeiffer, R. Johanni: A Concept for Manipulator Trajectory Planning. IEEE J. Robotics and Automation, Vol. RA-3, Nr. 2, 1987.

    Google Scholar 

  27. F. Pfeiffer, B. Gebier: A Multistage Approach to the Dynamics and Control of Elastic Robots. Proc. IEEE Int. Conf. on Robotics and Automation, Philadelphia/USA, 2-8, 1988.

    Google Scholar 

  28. F. Pfeiffer, K. Richter: Optimal Path Planning Including Forces at the Gripper. To appear in J. of Intelligent and Robotic Systems, Reidel, Holland.

    Google Scholar 

  29. F. Pfeiffer, K. Richter, H. Wapenhans: Elastic Robot Trajectory Planning with Force Control, to appear in Proc. of IFIP International Symp. on Theory of Robots, Rom, Italien (1990).

    Google Scholar 

  30. M. H. Raibert, J. J. Craig: Hybrid Position/Force Control of Manipulators. Trans, of the ASME, Dyn. Syst., Measurement and Control, Vol. 102, 126–133, 1981.

    Article  Google Scholar 

  31. K. G. Shi, N. D. McKay: Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints. IEEE Trans. Automatic Control 30, 531–541, 1985.

    Article  Google Scholar 

  32. P. Tomei, S. Nicosia, A. Ficola: Approach to the Adaptive Control Robots. Proc. IEEE Conf. on Robotics and Automation, San Francisco/USA, 552-558, 1986.

    Google Scholar 

  33. A. Truckenbrodt: Bewegungs verhalt en und Regelung hybrider Mehrkörpersysteme mit Anwendung auf Industrieroboter. Fortschr.-Ber. VDI-Z., Reihe 8, Nr. 33, 1980.

    Google Scholar 

  34. A. F. Vereshagin: Computer Simulation of the Dynamics of Complicated Mechanisms of Robot Manipulators, Eng. Cybernetics, No. 6, 65–70, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Bremer, H., Pfeiffer, F. (1991). Control of Elastic Robots. In: Banichuk, N.V., Klimov, D.M., Schiehlen, W. (eds) Dynamical Problems of Rigid-Elastic Systems and Structures. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84458-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84458-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84460-7

  • Online ISBN: 978-3-642-84458-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics