Elastic Multibody Theory Applied to Elastic Manipulators

  • F. Pfeiffer
  • H. Bremer
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

We consider multibody systems with rigid and elastic components and the assumption, that any elastic components or couplings generate only small elastic deformations. The multibody system then performs a nonlinear gross motion determined by the corresponding system without elasticities superimposed by small elastic deviations and vibrations. Paper gives the theory for that case and an application on elastic manipulators.

Keywords

Torque Lost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    d’Alembert, Jean le Rond: Traité de Dynamique. Chez David, Libraire, Paris 1758.Google Scholar
  2. [2]
    Brandl, H., Johanni, R..; Otter, M.: A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems without Inversion of the Mass Matrix. IFAC/IFIP/IMACS Symp. on Theory of Robots, Vienna/Austria, Dec. 1986.Google Scholar
  3. [3]
    Bremer, H.: Dynamik und Regelung mechanischer Systeme, Teubner, Stuttgart, 1988.MATHGoogle Scholar
  4. [4]
    Bremer, H.: On the Dynamics of Flexible Manipulators. Proc. 2nd IEEE Conf. Robotics and Automation, Rayleigh/USA, 1556-1560, 1987.Google Scholar
  5. [5]
    Bremer, H.: Dynamics of Multibody Systems with Elastic Components. (in German), ZAMM 65, 613–621, 1985.CrossRefMATHADSGoogle Scholar
  6. [6]
    Bremer, H., Pfeiffer, F.: Control of Elastic Robots. Proc. IUTAM Symp.on Dynamic Problems of Rigid-Elastic Systems and Structures, Moscow, May 23–27, to appear.Google Scholar
  7. [7]
    Fleischer, G. C.; Likins, P. W.: Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies. JPL Tech. Report 32-1592, Pasadena, 1974.Google Scholar
  8. [8]
    Gebier, B.: Modellbildung, Regelung und Steuerung für elastische Industrieroboter. VDI-Fortschr.-Ber, Reihe 11, Nr. 98, Düsseldorf 1987.Google Scholar
  9. [9]
    Haug, E. J.; Shic, C. W.; Sung-Soo Kim: Dynamics of Flexible Machines: A Variational Approach. IUTAM/IFToMM Symp. on Dynamics of Multibody Systems, Udine 1985, Springer Berlin Heidelberg 1986.Google Scholar
  10. [10]
    Hooker, W. W.: Equations of motion for interconnected rigid and elastic bodies: a derivation independent of angular momentum. Celestial Mech. 2 (1975), 337–359.CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    Hooker, W. W.; Margulies, G.: The dynamics attitude equations for n-body satellite. J. Astronautical Sci. 12 (1965), 123–128.ADSMathSciNetGoogle Scholar
  12. [12]
    Huston, R. L.; Pasarello, C. E.; Harlow, M. W.: Dynamics of Multi-Rigid-Body Systems. J. Appl. Mech. 45 (1978), 889–894.CrossRefADSGoogle Scholar
  13. [13]
    Jourdain, P. E. B.: Note on an Analogue of Gauss’ Principle of Least Constraint., Quarterly J. of Pure and Appl. Math., Vol. XL, London, Longmans, Green and Co., 1909.Google Scholar
  14. [14]
    Kane, T.R.; Levinson, D.A.: Dynamics: Theory and Application. New York, McGraw Hill, 1985.Google Scholar
  15. [15]
    Kane, T.R.: Dynamics of Nonholonomic Systems. J. Appl. Mech. 28 (1961), 574–578.CrossRefMATHADSMathSciNetGoogle Scholar
  16. [16]
    Kleemann, U.: Regelung elastischer Roboter, VDI Fortschr.-Ber., Reihe 8, Nr. 191, Düsseldorf 1989.Google Scholar
  17. [17]
    Lachenmayr, G.: Schwingungen in Plantetengetrieben mit elastischen Hohlrädern. VDI Fortschr.-Ber., Reihe 11, Nr. 108, Düsseldorf 1988.Google Scholar
  18. [18]
    Lagrange, J.-L.: Mécanique Analytique. Veuve Desaint, Paris 1788, Reprint Editions Jaques Gabay, Sceaux 1989.Google Scholar
  19. [19]
    Lilov, L. K.: Dynamics of Elastic Multibody Systems Involving Closed Loops. IUTAM/IFToMM Symp. on Dynamics of Multibody Systems, Udine 1985, Springer Berlin Heidelberg 1989.Google Scholar
  20. [20]
    Pfeiffer, F.; Gebler,B.: A Multistage Approach to the Dynamics and Control of Elastic Robots. Proc. IEEE Int. Conf. on Robotics and Automation, Philadelphia/USA, 2-8, 1988.Google Scholar
  21. [21]
    Pfeiffer, F.; Kleemann, U. Elasticity and Vibration Control for Manipulators. Proc. IEEE Int. Conf. on Control and Applications, Jerusalem, 1989.Google Scholar
  22. [22]
    Pfeiffer, F.; Richter, K.; Wapenhans, H.: Elastic Robot Trajectory Planning with Force Control. Proc. of the IFIP International Symp. on Theory of Robots, Rome, Italy 1990.Google Scholar
  23. [23]
    Schiehlen, W.O.: Dynamics of Complex Multibody Systems. SM Archives 9 (1984), 159–195.MATHGoogle Scholar
  24. [24]
    Schwertassek, R.; Roberson, R.E.: A state-space dynamical representation for multibody mechanical systems. Acta Mech. 50 1983, 141–161 Part II: Systems with closed loops. Acta Mech 51 (1984), 15-29.CrossRefADSGoogle Scholar
  25. [25]
    Singh, R.P.; Vandervoort, R.J.: Dynamics of Flexible Bodies in Tree Topology: A Computer Oriented Approach. J. Guid. Contr., Vol 8, Nr. 5, Sept. 1985, 584–590.CrossRefMATHGoogle Scholar
  26. [26]
    Ulbrich, H.: Dynamik und Regelung von Rotorsystemen. VDI Fortschr.-Ber., Reihe 11, Nr. 86, D’usseldorf 1986.Google Scholar
  27. [27]
    Wittenburg, J.: The dynamics of systems of coupled rigid bodies. A new general formalism with applications. Stereodynamics Centro Internazionale Matematica Estivo, I Ciclo 1971, (Bressanone, 2–12 Jun 1971), Edizioni Cremonese, Roma, 1972.Google Scholar
  28. [28]
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart 1977.MATHGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • F. Pfeiffer
    • 1
  • H. Bremer
    • 1
  1. 1.Institute B of MechanicsTechnical University of MunichGermany

Personalised recommendations