Problems of Structural Optimization Under Creep Conditions

  • M. Życzkowski
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Optimal structural design under creep conditions, initiated over 20 years ago, brings a fairly large variety of problems, interesting both from theoretical and engineering point of view. Existence of the time factor leads to optimization for a prescribed lifetime and the number of independent variables in governing equations increases by one. Practical importance is connected with design of metal structures working at elevated temperatures, structures made of plastics, concrete etc. Here we discuss optimization problems with constraints imposed on brittle and ductile creep rupture, stiffness, creep buckling, dynamic behaviour. Some further possible directions of development are mentioned as well.

Keywords

Anisotropy Torque Brittle Compressibility Meric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cegielski, E.: Parametric optimization of viscoplastic bars under dynamic twisting loadings, Mech. Teor. Stos. 28 (1990), 1-2, 35–44.Google Scholar
  2. [2]
    Chen, C.P.; Lakes, R.S.: Design of viscoelastic impact absorbers: optimal material properties, Int. J. Solids Struct. 26 (1990), 12, 1313–1328.CrossRefGoogle Scholar
  3. [3]
    Dulman, V.M.: Optimal structural design of shells with double curvature under creep conditions, Lit. Mekh. Sbornik 29 (1987), 24–32. (in Russian).Google Scholar
  4. [4]
    Gajewski A.: Optymalne ksztaltowanie wytrzymalościowe w przypadku materialu o nieliniowości fizycznej, Zeszyty Nauk. Polit. Krak. 5, Kraków 1975.Google Scholar
  5. [5]
    Gajewski A.: Effects of physical nonlinearities on optimal design of structures, Proc. IUTAM Symp. on Physical Nonlinearities, Senlis 1980, Springer 1981, 81-84.Google Scholar
  6. [6]
    Ganczarski, A.; Skrzypek, J.: Optimal prestressing and design of rotating disk against brittle rupture under unsteady creep conditions, Rozpr. Inż (Eng. Trans.) 37 (1989), 4, 49–71.Google Scholar
  7. [7]
    Ganczarski, A.; Skrzypek, J.: Optimal shape of prestressed disks against brittle rupture under unsteady creep conditions, Struct. Optimiz. (submitted for publication).Google Scholar
  8. [8]
    Kruzelecki, J.; Życzkowski, M.: Optimal design of an elastic cylindrical shell under overall bending with torsion, Solid Mech. Arch. 9 (1984), 3, 269–306.Google Scholar
  9. [9]
    Meric, R.A.: Shape variations for viscoelastic solid under transient response, Z. angew. Math. Mechanik 70 (1990), 11, 509–516.MATHCrossRefGoogle Scholar
  10. [10]
    Nemirovsky, Yu.V.: Optimal design of creeping structures, III Vsesoyuzny Syezd po Mekh., Moskva 1968. (in Russian).Google Scholar
  11. [11]
    Nemirovsky, Yu.V.: Problems of creep rupture and optimization of structures under creep conditions, IUTAM Symp. Creep in Structures IV, Kraków 1990 (not submitted for publication).Google Scholar
  12. [12]
    Post, P.U.: Optimale Auslegung viskoelastischer Faserverbundstrukturen unter hygrothermischen Einflüssen, Beiträge zur Maschinentechnik, Universität Siegen 1990, 103-127.Google Scholar
  13. [13]
    Prager, W.: Optimal structural design for given stiffness in stationary creep, Z. angew. Math. Physik 19 (1968), 2, 252–256.MATHCrossRefGoogle Scholar
  14. [14]
    Reitman, M.I.: On the theory of optimal design of structures made of plastics with the time factor taken into account, Mekh. Polimerov (1967), 2, 357–360. (in Russian).Google Scholar
  15. [15]
    Rysz, M.: Optimal shaping of a cross section of a cylindrical shell under combined loadings with respect to creep stability, IUTAM Symp. Creep in Structures IV, Kraków 1990 (not submitted for publication).Google Scholar
  16. [16]
    Rysz, M.; Życzkowski, M.: Optimal design of a cylindrical shell under overall bending and axial force with respect to creep stability, Structural Optimization 1 (1989), 1, 29–36.CrossRefGoogle Scholar
  17. [17]
    Szuwalski, K.: Optimal design of bars under nonuniform tension with respect to ductile creep rupture, Mechanics of Struct. Machines 17 (1989), 3, 303–319.CrossRefGoogle Scholar
  18. [18]
    Szuwalski, K.: Bars of uniform strength vs. optimal with respect to ductile rupture time, Proc. IUTAM Symp. Creep in Structures IV (this Volume).Google Scholar
  19. [19]
    Szuwalski, K.: Optymalne ksztaltowanie elementów konstrukcji z uwagi na czas zniszczenia ciggliwego w warunkach pelzania, Zeszyty Nauk. Polit. Krak., Kraków 1991.Google Scholar
  20. [20]
    Świsterski, W.; Wróblewski, A.; Życzkowski, M.: Geometrically non-linear eccentrically compressed columns of uniform creep strength vs. optimal columns, Int. J. Non-Linear Mech.18 (1983), 4, 287–296.MATHCrossRefGoogle Scholar
  21. [21]
    Trojnacki, A.; Życzkowski, M.: Effect of plastic crushing of the car body on optimization of rheological properties of safety belts, Rozpr. Inż (Eng. Trans.) 29 (1981), 1, 115–130.Google Scholar
  22. [22]
    Wróblewski, A.: Optimal design of annular plates against creep buckling, Proc. IUTAM Symp. Creep in Structures IV (this Volume).Google Scholar
  23. [23]
    Wróblewski, A.; Życzkowski, M.: On multimodal optimization of circular arches against plane and spatial creep buckling, Structural Optimization 1 (1989), 4, 227–234.CrossRefGoogle Scholar
  24. [24]
    Życzkowski, M.: Optimal structural design in rheology, 12th Int. Congr. Theor. Appl. Mech., Stanford 1968; J. Appl. Mech. 38 (1971), 1, 39–46.CrossRefGoogle Scholar
  25. [25]
    Życzkowski, M.: Optimal structural design under creep conditions, Appl. Mech. Reviews 41 (1988), 12, 453–461.CrossRefGoogle Scholar
  26. [26]
    Życzkowski, M.; Krużelecki, J.: Optimal design of shells with respect to their stability, Proc. IUTAM Symp. Optimization in Structural Design, Warszawa 1973; Springer 1975, 229-247.Google Scholar
  27. [27]
    Życzkowski, M.; Rysz, M.: Optimization of cylindrical shells under combined loading against brittle creep rupture, Proc. IUTAM Symp. Inelastic Behaviour of Plates and Shells, Rio de Janeiro 1985; Springer 1986, 385-401.Google Scholar
  28. [28]
    Życzkowski, M.; Wojdanowska-Zajac, R.: Optimal structural design with respect to creep buckling, Proc. IUTAM Symp. Creep in Structures II, Göteborg 1970; Springer 1972 371-387.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • M. Życzkowski
    • 1
  1. 1.Institute of Mechanics and Machine DesignCracow University of TechnologyPoland

Personalised recommendations