A Viscoplasticity Theory of Irradiated Materials

  • M. V. Mićunović
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

In order to account for irradiation damage of reactor steels a unified theory of viscoplasticity of damaged materials is indispensable. Such a theory is presented in this paper aimed for general interaction between irradiation and viscoplasticity. Evolution equations for plastic strain rate, heat flux and neutron flux include material functions depending on pastic strain and temperature. Consideration of finite plastic and small thermoelastic strains permits significant simplifications of the theory giving rise to tensor representations of constitutive equations. The most special case of small plastic strains is also presented and discussed.

Keywords

Entropy Anisotropy Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mićunović, M.: On low strain-rate viscoplasticity of continuously damaged materials. In: Current advances in mechanical design and production IV, Kabil, Y. H.; Said, M. E. (eds.) 181–188. Oxford: Pergamon Press 1989.Google Scholar
  2. 2.
    Kroener, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal. 4 (1970) 273–334.CrossRefGoogle Scholar
  3. 3.
    Stojanović, R.: Reference-state problem in non-linear elasticity theory. Physica Status Solidi 2 (1962) 566–575.CrossRefGoogle Scholar
  4. 4.
    Bilby, B. A.: Continuous distributions of dislocations. Progress in Sol. Mech. 1 (1960) 329–398.MathSciNetGoogle Scholar
  5. 5.
    Mićunović, M.: A geometrical treatment of thermoelasticity of simple inhomogeneous bodies: I-Geometric and kinematic relations. Bull. Acad. Polon. Sci., Ser. Sci. Techn. 22 (1974) 663–642.Google Scholar
  6. 6.
    Dashner, P. A.: Invariance considerations in large strain elastoplasticity. J. Appl. Mech. 53 (1986) 55–60.MATHCrossRefGoogle Scholar
  7. 7.
    Murakami, S.: Mechanical modelling of material damage. ASME J. Appl. Mech. 55 (1988) 280–286.CrossRefGoogle Scholar
  8. 8.
    Murakami, S.; Sanomura, Y.: Creep and creep damage of copper under multiaxial state of stress. In: Plasticity today, Sawczuk A; Bianchi, G. (eds.) London: Elsevier 1985.Google Scholar
  9. 9.
    Maruszewski, B.; Mićunović, M: On Neutron Irradiation of an Isotropic Thermoplastic Body Int. J. Engng. Sci. 27/8 (1989) 955–965.CrossRefGoogle Scholar
  10. 10.
    Mićunović, M. A Thermodynamic Model of Ideal Cyclic Viscoplasticity In: Transactions of SMIRT-9, L Wittmann, F. H. (ed.) 195-203. Rotterdam: Balkema 1987.Google Scholar
  11. 11.
    Mroz, Z.; Shrivastava, H. R.; Dubey. R. N. A Non-Linear Hardening Model and Its Application to Cyclic Loading. Acta Mechanica 17 (1973) 277–290.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Müller, I. The Coldness, a Universal Function in Thermoelastic Bodies. Arch. Rational Mech. Anal. 41 (1971) 319–332.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Truesdell, C; Noll, W. The Non-Linear Field Theories of Mechanics. In: Handbuch der Physik III/3, Fluegge S. (ed.) Berlin: Springer 1965.Google Scholar
  14. 14.
    Spencer, A. J. M. Theory of invariants. In: Continuum Physics, Eringen A. C. (ed.) New York: Academic Press 1971.Google Scholar
  15. 15.
    Albertini, C, Montagnani, M and M. Mićunović Viscoplastic Behaviour of AISI 316 H — Multiaxial Experimental Results. Transactions of SMIRT-10, Los Angeles 1989.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • M. V. Mićunović
    • 1
  1. 1.Svetozar Marković UniversityKragujevacYugoslavia

Personalised recommendations