Advertisement

Exact Widths and Tails for Landau Levels Broadened by a Random Potential with an Arbitrary Correlation Length

  • K. Broderix
  • N. Heldt
  • H. Leschke
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 101)

Abstract

This publication is concerned with the broadening of Landau levels due to disorder and some effects thereof. The underlying model can be described by the Hamiltonian
$$\begin{array}{*{20}c} {H: = H_0 + V,} & {H_0 : = \frac{1} {{2m}}\left( {\frac{{\hbar \partial }} {{i\partial x_1 }}} \right)^2 + \frac{1} {{2m}}\left( {\frac{{\hbar \partial }} {{i\partial x_2 }} + eBx_1 } \right)^2 } \\ \end{array}$$
(1)
(1) for one (spinless) electron of (effective) mass m and charge −e in the infinite (x 1,x 2) plane under the influence of a perpendicular constant magnetic field of strength B and a random potential V. The probability distribution of V is assumed to be Gaussian with
$$\begin{array}{*{20}c} {\overline {V\left( x \right)} = 0,} & {\overline {V\left( x \right)V\left( {x'} \right)} = \sigma ^2 \exp \left\{ {{{ - \left( {x - x'} \right)^2 } \mathord{\left/ {\vphantom {{ - \left( {x - x'} \right)^2 } {2\lambda }}} \right. \kern-\nulldelimiterspace} {2\lambda }}^2 } \right\},} & {x: = \left( {x_1 ,x_2 } \right).} \\ \end{array} $$
(2)
(2) Here the overbar denotes the average with respect to the probability distribution, σ is the strength and λ the correlation length of the fluctuations of the potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. R. Gerhardts: Z. Physik B 21, 275 (1975); 285 (1975).CrossRefGoogle Scholar
  2. R. R. Gerhardts: Surf. Sci. 58, 227 (1976).CrossRefGoogle Scholar
  3. [2]
    K. Broderix, N. Heldt, H. Leschke: Nuovo Cimento 11 D, 241 (1989).CrossRefGoogle Scholar
  4. [3]
    K. Broderix, N. Heldt, H. Leschke: Phys. Rev. B40, 7479 (1989).Google Scholar
  5. [4]
    K. A. Benedict: Nucl. Phys. B 280, 549 (1987).CrossRefGoogle Scholar
  6. W. Apel: J. Phys. C 20, L577 (1987).CrossRefGoogle Scholar
  7. [5]
    K. Broderix, N. Heldt, H. Leschke: In preparation.Google Scholar
  8. [6]
    K. A. Benedict, J. T. Chalker: J. Phys. C 18, 3981 (1985).CrossRefGoogle Scholar
  9. K. Broderix, N. Heldt, H. Leschke: Z. Physik B 68, 19 (1987).Google Scholar
  10. [7]
    K. A. Benedict, J. T. Chalker: J. Phys. C 19, 3587 (1986).Google Scholar
  11. R. Salomon: Z. Physik B 65, 443 (1987).Google Scholar
  12. [8]
    F. Wegner: Z. Physik B 51, 279 (1983).Google Scholar
  13. [9]
    W. Zawadzki, R. Lassnig: Surf. Sci. 142, 225 (1984).CrossRefGoogle Scholar
  14. [10]
    J. P. Eisenstein, H. L. Störmer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, C. W. Tu: Phys. Rev. Lett. 55, 875 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. Broderix
    • 1
  • N. Heldt
    • 1
  • H. Leschke
    • 1
  1. 1.Institut für Theoretische PhysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations