Advertisement

The Mechanisms of Formation and Breakdown of Soliton-like Coherent Structures in Boundary Layers

  • Y. S. Kachanov

Abstract

The paper is devoted to a review of recent studies (mainly experimental ones) where a set of principle results on the problem of the generation, development and breakdown of specific nonlinear wave packets (coherent structures) in a transitional boundary layer were obtained. These results are generalized and applied to the description of the developed turbulent boundary layer. A new resonant-soliton concept of the wall turbulence is proposed and experimentally substantiated.

Keywords

Boundary Layer Coherent Structure Phase Synchronism Phase Trajectory Fundamental Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klebanoff P.S., Tidstrom K.D. & Sargent L.M. 1962 J. Fluid Mech. 12, 1–41.CrossRefMATHADSGoogle Scholar
  2. 2.
    Kachanov Y.S., Kozlov V.V. & Levchenko V.Y. 1977 Proc. Acad. Sci. USSR, Fluid Mech. 3, 49–58 (in Russian).Google Scholar
  3. 3.
    Kachanov Y.S. 1987 J. Fluid Mech. 184, 43–74.CrossRefADSGoogle Scholar
  4. 4.
    Kachanov Y.S., Kozlov V.V., Levchenko V.Y. & Ramazanov M.P. 1985 In: Laminar-Turbulent Transition. Springer 61–73.CrossRefGoogle Scholar
  5. 5.
    Kachanov Y.S. 1990 To be published in: Proc. Third IUTAM Symp. Laminar-Turbulent Transition. Toulouse 1989 Springer.Google Scholar
  6. 6.
    Borodulin V.L. & Kachanov Y.S. 1988 Proc. Siberian Div. Acad. Sci. USSR. 5, 65–77 (in Russian).Google Scholar
  7. 7.
    Demyohin E.A. & Shkadov V.Y. 1986 Proc. Acad. Sei. USSR. Fluid Mech. 3, 91–97 (in Russian).Google Scholar
  8. 8.
    Kachanov Y.S. 1985 In: Laminar-Turbulent Transition. Springer, 115–123.Google Scholar
  9. 9.
    Zhuk V.I. & Ryzhov O.S. 1982 Dokl. Akad. Nauk SSSR. 263, N° 1 (in Russian).Google Scholar
  10. 10.
    Rothmayer A.P. & Smith F.T. 1987 Trans. ASME, Cincinnatti, Ohio, June 1987.Google Scholar
  11. 11.
    Landahl M.T. 1972 J. Fluid Mech. 56, 755–802.CrossRefADSGoogle Scholar
  12. 12.
    Nishioka M., Asai M. & lida S. 1980 In: Laminar-Turbulent Transition. Springer 37–46.Google Scholar
  13. 13.
    Craik A.D.D. 1971 J. Fluid Mech. 50, 393–413.CrossRefMATHADSGoogle Scholar
  14. 14.
    Nayfeh A.H. & Bozatli A.N. 1979 AIAA-79–1456.Google Scholar
  15. 15.
    Zelman M.B. & Maslennikova I.I. 1982 In: Instability sub-and supersonic flows. I.T.A.M., Novosibirsk 5–15 (in Russian).Google Scholar
  16. 16.
    Herbert T. 1988 Ann. Rev. Fluid Mech. 20.Google Scholar
  17. 17.
    Kachanov Y.S. & Levchenko V.Y. 1984 J. Fluid Mech. 138, 209–247.CrossRefADSGoogle Scholar
  18. 18.
    Borodulin V.I. & Kachanov Y.S. 1989 In: Simulation in Mechanics. I.T.A.M., Novosibirsk 3(20) N° 2, 38–45 (in Russian).Google Scholar
  19. 19.
    Dryganets S.V., Kachanov Y.S, Levchenko V. Y. & Ramazanov M.P. 1990 J. Appl. Math. Tech. Phys. 2 (in Russian).Google Scholar
  20. 20.
    Kline S.J. & Rundstadler P.W. 1959 Trans. ASME E: J. Appl. Mech. 26.Google Scholar
  21. 21.
    Repik E.U. & Sosedko Y.P. 1974 In: Turbulent Flows. Moscow, Nauka.Google Scholar
  22. 22.
    Blackwelder R.F. 1983 Phys. Fluids 26, 2807–2815.CrossRefADSGoogle Scholar
  23. 23.
    Lifshits A.M., Rahamtullaev R.D. & Shtern V.N. 1989 Proc.Acad. Sci. USSR. 4 (in Russian).Google Scholar
  24. 24.
    Fukinishi Y., Sato H. & Inous O. 1987 AIAA-87–1253.Google Scholar
  25. 25.
    Makita H., Sassa K., Abe M. & Itabashi, A. 1987 AIAA-87–1232.Google Scholar
  26. 26.
    Thomas A.S.W. & Bull M.K. 1983 J. Fluid Mech. 128, 283–322.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Y. S. Kachanov
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsNovosibirskUSSR

Personalised recommendations