Skip to main content

Defining the Zonal Structure of Turbulence Using the Pressure and Invariants of the Deformation Tensor

  • Conference paper
Advances in Turbulence 3

Abstract

A set of objective criteria based on the local strain rate, vorticity and pressure have been found to describe regions in which the streamlines circulate, converge or diverge, and form streams of high velocity flow. The homogeneous and sheared turbulent flow fields are made up of characteristic flow zones — eddy, shear, convergence and streaming zones. These are studied in turbulent velocity fields produced by different methods of simulation, including the novel method of Kinematic Simulation of homogeneous isotropic turbulence are summarised. We derive and explain the zonal algorithm to classify structures and then use this classification to compare the results of two different numerical simulations (DNS, KS) both qualitatively (turbulence structure, physical processes) and quantitatively (turbulence statistics) for homogeneous isotropic turbulence and then we apply the zonal algorithm to a turbulent shear flow. New conclusions are reached about the significant regions in turbulent flows for dynamical and kinematical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubry, N., Holmes, P., Lumley, J.L. & Stone, E. 1988, J. Fluid Mech., 192, 115–173.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Adrian, R.J. & Moin, P. 1988, J. Fluid Mech., 190, 531–559.

    Article  MATH  ADS  Google Scholar 

  • Broadwell, J.R. & Breidenthal, R.E. 1982, J. Fluid Mech., 125397–410.

    Article  ADS  Google Scholar 

  • Brown, D.G. & Hutchinson, P. 1979, J. Fluid Eng., 101, 265–269.

    Article  Google Scholar 

  • Carruthers D.J., Fung J.C.H., Hunt J.C.R. and R.J. Perkins (1990) Turbulence and coherent structures, Proc. Grenoble conference 1989. Eds.Mesieur M. and Mütais O. Kluwer academic publishers.

    Google Scholar 

  • Fung, J.C.H. & Perkins, R.J. 1989, Advances in Turbulence 2, pp. 322–328 (ed. H.-H. Fernholz & H.E. Fiedler).

    Google Scholar 

  • Fung, J.C.H., Hunt, J.C.R., Malik, N.A. & Perkins, R.J. 1990, submitted to J. Fluid Mech.

    Google Scholar 

  • Head, M.R. & Bandyopadhyay, P. 1981, J. Fluid Mech., 107, 297–338.

    Article  ADS  Google Scholar 

  • Hunt, J.C.R., Buell, J.C. & Wray, A.A. 1987, Proceedings of the 1987 Summer Program, Stanford University.

    Google Scholar 

  • Hunt J.C.R. 1987 Trans. Can. Soc. Mech. Eng., 11, 21–35.

    Google Scholar 

  • Hunt, J.C.R., Aution, T.R., Sene, K., Thomas, N.H. & Kowe, R. 1988, Proc. Conf. Transient Phenomena in Multiphase Flow, Hemisphere.

    Google Scholar 

  • Hunt, J.C.R., Fung, J.C.H., Malik, N.A., Perkins, R.J., Vassilicos, J.C., Bertoglio, J.P., Wray, A.A., Buell, J.C. & Rogallo, R. 1990 Proc. 3rd European Turbl. Conference, Springer-Verlag, Stockholm.

    Google Scholar 

  • Hussain, A.K.M.F. 1986, J. Fluid Mech., 173, 303–356.

    Article  ADS  Google Scholar 

  • Kim, J., Moin, P. & Moser, R.D. 1987 J. Fluid Mech., 177, 133–166.

    Article  MATH  ADS  Google Scholar 

  • Lee, M.J., Kim, J. & Moin, P. 1987 In: Sixth Symposium on Turbulence Shear Flows, Toulouse, France (ed. F. Durst et al.).

    Google Scholar 

  • Leonard, A.D. & Hill, J.C. 1988 Proc. CTR Summer Program.

    Google Scholar 

  • Maxey, M.R. 1987, J. Fluid Mech., 174, 441–465.

    Article  MATH  ADS  Google Scholar 

  • Moin, P, Leonard, A.D. & Kim, J. 1986 Phys. Fluid, 29, 955–963.

    Article  ADS  Google Scholar 

  • Mumford, J.C. 1983, J. Fluid Mech., 137, 447–456.

    Article  ADS  Google Scholar 

  • Perry, A.E. & Chong, M.S. 1987, Ann. Rev. Fluid Mech., 125–155.

    Google Scholar 

  • Peters, N. & Williams, F.A. 1988, 22nd Symposium on Combustion, Seattle.

    Google Scholar 

  • Rogallo, R.S. 1981, Numerical experiments in homogeneous turbulence, NASA TM81315

    Google Scholar 

  • Stretch, D. 1990 Annual Research Briefs -1989, Stanford University.

    Google Scholar 

  • Tennekes, H. 1975, J. Fluid Mech., 67, 561–567.

    Article  MATH  ADS  Google Scholar 

  • Vassilicos, J.C. 1989, Advances in Turbulence 2, pp.404–411 (ed. H.-H. Fernholz & H.E. Fiedler).

    Google Scholar 

  • Wray, A.A & Hunt, J.C.R. 1990, ProcIUTAM, symposium on `Topological Fluid Mechanics’. Cambridge, CUP.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Fung, J.C.H., Hunt, J.C.R., Perkins, R.J., Wray, A.A., Stretch, D. (1991). Defining the Zonal Structure of Turbulence Using the Pressure and Invariants of the Deformation Tensor. In: Johansson, A.V., Alfredsson, P.H. (eds) Advances in Turbulence 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84399-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84399-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84401-0

  • Online ISBN: 978-3-642-84399-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics