Skip to main content

High-Temperature Superconductivity: The Experimental Situation

  • Chapter
Electronic Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 95))

  • 260 Accesses

Abstract

The various classes of oxide superconductors have critical temperatures which greatly exceed those of so-called conventional materials [6.1–5]. They may also have enormous critical magnetic fields as well, depending on the particular extrapolation employed. It is, however, as yet unknown whether large critical currents can be achieved for bulk material in a magnetic field. The prospects for a new generation of superconducting electronic devices and sensors are just beginning to be explored. The potential impact on technology of the new high temperature superconductors has been the driving force behind the enormous volume of work in the field over the last few years. The frenzied pace of research is consistent with its importance, given the words of the Soviet physicist V.L. Ginzburg [6.6]. He contends that the problem of high temperature (ultimately room temperature) superconductivity may be the second most important problem in physical science, behind that of controlled fusion, in terms of its potential impact on society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz, K.A. Müller: Z. Phys. B 64, 189 (1986)

    Article  CAS  Google Scholar 

  2. M.K. Wu: Phys. Rev. Lett. 58, 908 (1987)

    Article  CAS  Google Scholar 

  3. C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau: Z. Phys. B 68, 421 (1987);

    Article  CAS  Google Scholar 

  4. H.G. von Schnering, L. Walz, M. Schwarz, W. Becker, M. Hartweg, T. Popp, Hettich, P. Muller, G. Kampf: Angew. Chem. Int. Ed. Engl. 27, 574 (1988);

    Article  Google Scholar 

  5. H. Maeda, Y. Tanak, M. Fukutome, T. Asano: Jpn. J. Appl. Phys. 27, L209 (1988)

    Article  CAS  Google Scholar 

  6. Z.Z. Sheng, A.M. Hermann: Nature (London) 332, 138 (1988)

    Article  CAS  Google Scholar 

  7. RJ. Cava, B. Batlogg, JJ. Krajedwski, R. Farrow, L.W. Rupp Jr., A.E. White, K. Short, W.F. Peck, T. Kometani: Nature (London) 332, 814 (1988)

    Article  CAS  Google Scholar 

  8. V.L. Ginzburg: Contemp. Phys. 9, 335 (1968)

    Article  Google Scholar 

  9. A.W. Sleight, J.L. Gilson, P.E. Bierstedt: Solid. State Commun. 17, 27 (1975)

    Article  CAS  Google Scholar 

  10. A.W. Sleight: Science 242, 1519 (1988)

    Article  CAS  Google Scholar 

  11. J. Talvacchio: Supercond. 2, 1 (1989)

    Article  Google Scholar 

  12. For a discussion of the standard properties of superconductors see: M. Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1975), reprinted by Robert E. Krieger, Malabar, FL 1980 and 1985

    Google Scholar 

  13. S.S. Parkin, V.Y. Lee, E.M. Engler, A.I. Nazzal, T.C. Huang, G. Gorman, R. Savoy, R. Beyers: Phys. Rev. Lett. 60, 2539 (1988)

    Article  CAS  Google Scholar 

  14. Bernard M. Kulwicki: “PTC Materials Technology, 1955–1980”, in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, ed. by L.M. Levinson, D.C. Hill (American Ceramic Society, Columbus, OH 1981)

    Google Scholar 

  15. Compounds which are the lanthanide analogs of YBa2Cu3O7-x were found simultaneouly and independently at many laboratories worldwide. See: M.B. Maple, Y. Dalichaouch, J.M. Ferreira, R.R. Hake, B.W. Lee, J.J. Neumeier, M.S. Tricachvili, K.N. Yang, H. Zhou, R.P. Guertin, M.V. Kuric: Physica B 148, 155 (1987), and references therein

    Article  CAS  Google Scholar 

  16. I.K. Schuller, J.D. Jorgensen: Mater. Res. Soc. Bull. 14, 27 (1989)

    CAS  Google Scholar 

  17. Y. Tokura, H. Takagi, S. Uchida: Nature (London) 337, 345 (1989)

    Article  CAS  Google Scholar 

  18. H. Sawa et al.: Nature (London) 337, 347 (1989)

    Article  CAS  Google Scholar 

  19. H. Takagi, S. Uchida, Y. Tokura: Phys. Rev. Lett. 62, 1197 (1989)

    Article  CAS  Google Scholar 

  20. J.T. Markert, J.T. Maple: Preprint, University of California, San Diego (1989)

    Google Scholar 

  21. C.E. Gough et al.: Nature (London) 326, 694 (1987)

    Article  Google Scholar 

  22. P.L. Gammel, DJ. Bishop, GJ. Dolan, J.R. Kwo, C.A. Murray, L.F. Schneemeyer, J.V. Wasczak: Phys. Rev. Lett. 59, 2592 (1987)

    Article  CAS  Google Scholar 

  23. A. Kapitulnik, M.R. Beasley, C. Castellani, C.D. Castro: Phys. Rev. 37, 537 (1988)

    Article  Google Scholar 

  24. The most striking studies of anisotropy come from torque magnetometer investigations, see: D.E. Farell, CM. Williams, S.A. Wolf, N.P. Bausal, V.G. Kogan: Phys. Rev. Lett. 61, 2805 (1988);

    Article  Google Scholar 

  25. D.E. Farell, S. Bonham, J. Foster, Y.C. Chang, P.Z. Jiang, K.G. Vandervoort, D.J. Lan, V.G. Kogan: Phys. Rev. Lett. 63, 782 (1989)

    Article  Google Scholar 

  26. S. Martin, A.T. Fiory, RM. Fleming, G.P. Espinosa, A.S. Cooper: Phys. Rev. Lett. 62, 677 (1989)

    Article  CAS  Google Scholar 

  27. N.-C. Yeh, C.C. Tsuei: Phys. Rev. B 39, 9 (1989)

    Google Scholar 

  28. D.H. Kim, AM. Goldman, R. Kampwirth: Phys. Rev. B 40, 8834 (1989)

    Article  CAS  Google Scholar 

  29. D.H. Kim, AM. Goldman, J.H. Kang, K.E. Gray, R.T. Kampwirth: Phys. Rev. B 39, 12275 (1989) and references therein

    Article  CAS  Google Scholar 

  30. M. Tinkham, C.J. Lobb: In Solid State Physics, Vol. 42, ed. by H. Ehrenreich, D. Turnbull (Academic, New York 1989) p. 91

    Google Scholar 

  31. A.A. Abrikosov: Sov. Phys.-JETP 5, 1174 (1975)

    Google Scholar 

  32. K.A. Müller, M. Takashige, J.G. Bednorz: Phys. Rev. Lett. 58, 1143 (1987)

    Article  Google Scholar 

  33. T.TM. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak: Phys. Rev. Lett. 61, 1662 (1988)

    Article  CAS  Google Scholar 

  34. P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D J. Bishop: Phys. Rev. Lett. 61, 1666 (1988)

    Article  CAS  Google Scholar 

  35. Y. Yeshurun, A.P. Malozemoff: Phys. Rev. Lett. 60, 2202 (1988)

    Article  CAS  Google Scholar 

  36. J.R.L. de Almeida, DJ. Thouless: J. Phys. A 11, 983 (1978)

    Article  Google Scholar 

  37. M. Tinkham: Phys. Rev. Lett. 61, 1658 (1988)

    Article  Google Scholar 

  38. M.M. Fang, V.G. Kogan, D.K. Finnemore, J.R. Clem, L.S. Chumbley, D.E. Farell: Phys. Rev. Lett. 37, 2334 (1988)

    CAS  Google Scholar 

  39. Y. Iye, T. Tamegai, H. Takeya, H. Takei: In Superconducting Materials, ed. by S. Nakajima, H. Fukuyama, Jpn. J. Appl. Phys. Ser. 1 (JJAP, Tokyo 1988) p. 46

    Google Scholar 

  40. U. Essmann, H. Trauble: Phys. Lett. 24A, 526 (1967);

    Google Scholar 

  41. N.V. Sarnia: Philos. Mag. 17, 1233 (1968)

    Article  Google Scholar 

  42. E.H. Brandt, P. Esquinazi, G. Weiss: Phys. Rev. Lett, (c) 32, 2330 (1989);

    Article  Google Scholar 

  43. R.N. Kleiman, P.L. Gammel, L.F. Scheemeyer, J.V. Waszczak, D.J. Bishop: Phys. Rev. Lett. (c) 62, 2331 (1989)

    Article  CAS  Google Scholar 

  44. S.W. Tozer, A.W. Kliensasser, T. Penney, D. Kaiser, F. Holtzberg: Phys. Rev. Lett. 59, 1768 (1987)

    Article  CAS  Google Scholar 

  45. S. Martin, A.T. Fiory, RM. Fleming, L.F. Schneemeyer, J.V. Waszczak: Phys. Rev. Lett. 60, 2194 (1988)

    Article  CAS  Google Scholar 

  46. For a discussion of the Ginzburg-Landau Theory for short-coherence-length superconductors see: L.N. Bulajewskii, V.L. Ginzburg, A.A. Sobyanin: Zh. Ekspr. Teor. Fiz. 94, 355 (1988) [English transl.: Sov.-Phys.-JETP 68, 1499 (1988)]

    Google Scholar 

  47. CJ. Lobb: Phys. Rev. B 36, 3930 (1987)

    Article  Google Scholar 

  48. For a discussion of this issue see: D.H. Douglas: Phys. Rev. B 39, 4748 (1989)

    Article  Google Scholar 

  49. There are some specific heat results which probably are consistent with Gaussian fluctuations, although they may have been interpreted differently. See: S.E. Inderhees, M.D. Salamon, N. Goldenfeld, J.P. Rice, B.G. Payol, D.M. Ginsberg, J.Z. Liu, G.W. Crabtree: Phys. Rev. Lett. 60, 1178 (1988)

    Article  CAS  Google Scholar 

  50. A.J. Mills, D. Rainer, J. Sauls: In Novel superconductivity, ed. by S.A. Wolf, V.Z. Kresin (Plenum, New York 1987) p. 265

    Chapter  Google Scholar 

  51. P.W. Anderson: Science 235, 1196 (1987)

    Article  CAS  Google Scholar 

  52. G. Chen, W.A. Goddard: Science 239, 899 (1988)

    Article  CAS  Google Scholar 

  53. J. Niemeyer, M.R. Dietrich, C. Politis: Z. Phys. B 67, 155 (1987)

    Article  CAS  Google Scholar 

  54. O.S. Akhtyamov: JETP Lett. 3, 183 (1966)

    Google Scholar 

  55. For a review see: Z. Fisk, D.W. Hess, CJ. Pethick, D. Pines, J.L. Smith, J.D. Thompson, J.O. Willis: Science 239, 33 (1988)

    Article  CAS  Google Scholar 

  56. D.R. Harshman et al.: Phys. Rev. B 36, 2386 (1987)

    Article  CAS  Google Scholar 

  57. L. Krusin-Elbaum, R.L. Greene, F. Holtzberg, A. Malozemoff, Y. Yeshurun: Phys. Rev. Lett. 62, 217 (1989)

    Article  CAS  Google Scholar 

  58. B. Batlogg et al.: Phys. Rev. Lett. 58, 2333 (1987)

    Article  CAS  Google Scholar 

  59. L.C. Bourne et al.: Phys. Rev. Lett. 58, 2337 (1987)

    Article  CAS  Google Scholar 

  60. KJ. Leary, H.C. zur Laye, S.W. Keller, T.A. Faltens, W.K. Ham, J.N. Michaels, A.M. Stacy: Phys. Rev. Lett. 59, 1236 (1987)

    Article  CAS  Google Scholar 

  61. D.E. Morris, RM. Kuroda, A.G. Markelz, J.H. Nickel, J.Y.T. Wei: Phys. Rev. B 37, 5936 (1988)

    Article  CAS  Google Scholar 

  62. K.C. Ott et al.: Phys. Rev. B 39, 4285 (1989)

    Article  CAS  Google Scholar 

  63. B. Batlogg, G. Kouvrouklis, W. Weber, RJ. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, E.A. Reitman: Phys. Rev. Lett. 59, 912 (1987);

    Article  CAS  Google Scholar 

  64. T.A. Faltens et al.: Phys. Rev. Lett. 59, 915 (1987)

    Article  CAS  Google Scholar 

  65. M.V. Nevitt, G.W. Crabtree, T.E. Klippert: Phys. Lett. B 36, 2398 (1988)

    Google Scholar 

  66. S.E. Inderhees, M.B. Salomon, T.A. Friedman, DM. Ginsberg: Phys. Rev. B 36, 2401 (1988)

    Article  Google Scholar 

  67. A. Junod, A. Bezinge, J. Muller: Physica C 152, 50 (1988)

    Article  CAS  Google Scholar 

  68. W.L. Macmillan, JM. Rowell: In Superconductivity, Vols. I and II, ed. by R.D. Parks (Marcel Dekker, New York 1968) p. 561

    Google Scholar 

  69. J.P. Carbotte, F. Marsiglio: In Studies of High Temperature Superconductors, ed. by A.V. Narlikar (Nova Science, Commack, NY 1989)

    Google Scholar 

  70. I. Giaever, H.R. Zeller: Phys. Rev. Lett. 20, 1504 (1968);

    Article  CAS  Google Scholar 

  71. E. Ben Jacob, Y. Gefen: Phys. Lett. 108A, 289 (1985);

    Google Scholar 

  72. D. V. Averin, K.K. Likharev: J. Low Temp. Phys. 62, 345 (1986);

    Article  Google Scholar 

  73. This explanation was first suggested by M.D. Kirk et al.: Phys. Rev. B 35, 8850 (1987)

    Article  CAS  Google Scholar 

  74. F. Marsiglio, J.F. Hirsch: Preprint, University of California, San Diego (1989)

    Google Scholar 

  75. J.B. Barner, S.T. Ruggiero: Phys. Rev. Lett. 59, 807 (1987);

    Article  CAS  Google Scholar 

  76. L.S. Kuz’min, K.K. Likharev: JETP Lett. 45, 495 (1987)

    Google Scholar 

  77. J. Geerk, X.X. Xi, G. Linker: Z. Phys. B 73, 329 (1988)

    Article  CAS  Google Scholar 

  78. M. Lee, D.B. Mitzi, A. Kapitulnik, M.R. Beasley: Phys. Rev. B 39, 801 (1989);

    Article  CAS  Google Scholar 

  79. M. Lee, M. Naito, A. Kapitulnik, M.R. Beasley: Solid. State Commun. 70, 489 (1989)

    Article  Google Scholar 

  80. H.F.C. Hoevers, PJM. van Bantum, L.E.C. van de Leemput, H. van Kampen, A.J.G. Schellingerhout, D. van de Marel: Physica C 152, 105 (1988)

    Article  CAS  Google Scholar 

  81. G.E. Blonder, G.E. Tinkham, T.M. Klapwijk: Phys. Rev. B 25, 4515 (1982)

    Article  CAS  Google Scholar 

  82. T. Timusk et al.: Physica C 153–155, 1744 (1988)

    Article  Google Scholar 

  83. Y. Chang et al.: Phys. Rev. B 39, 4740 (1989)

    Article  CAS  Google Scholar 

  84. Y. Chang et al: Phys. Rev. B 39, 7313 (1989)

    Article  CAS  Google Scholar 

  85. For a phase diagram see: J.B. Torrance, Y. Tokura, A.I. Nazzal, A. Bezinge, T.C. Huang, S.S.P. Parkin: Phys. Rev. Lett. 61, 1127 (1988) and references therein

    Article  CAS  Google Scholar 

  86. E.W. Fenton: In Proc. Int. Conf. on Transition Metals, Kiev, June 1988

    Google Scholar 

  87. G. Shirane, Y. Endoh, RJ. Birgeneau, M.A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, T. Murakami: Phys. Rev. Lett. 59, 1613 (1987)

    Article  CAS  Google Scholar 

  88. K.B. Lyons, P.A. Fleury, J.P. Remeika, TJ. Negran: Phys. Rev. B 37, 2353 (1988)

    Article  CAS  Google Scholar 

  89. K.B. Lyons, P.A. Fleury, L.F. Schneemeyer, J.V. Waszczak: Phys. Rev. Lett. 60, 732 (1988)

    Article  CAS  Google Scholar 

  90. R.B. Laughlin: Science 245, 525 (1988)

    Article  Google Scholar 

  91. For a review of theories and this issue in particular see: VJ. Emery: MRS Bull. 14, 67 (1989)

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldman, A.M. (1991). High-Temperature Superconductivity: The Experimental Situation. In: Chelikowsky, J.R., Franciosi, A. (eds) Electronic Materials. Springer Series in Solid-State Sciences, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84359-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84359-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84361-7

  • Online ISBN: 978-3-642-84359-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics