Stimulus-Specific Synchronizations in the Visual Cortex: Linking of Local Features Into Global Figures?

  • Reinhard Eckhorn
Part of the Springer Series in Synergetics book series (SSSYN, volume 49)


Feature linking among multiple cortical maps in the visual system requires flexible mechanisms in order to cope with the immense variability of natural scenes. We recently discovered stimulus-specific dynamic interactions between cell assemblies in cat primary visual cortex that could function as a global-linking mechanism in sensory and motor systems: Stimulus-induced oscillatory activities of 30–80 Hz in remote cell assemblies in the same and different visual cortex areas mutually synchronize if the stimulus contains common features that activate the assemblies simultaneously. The results suggest that the stimulus-induced oscillations of those neural groups become synchronized, which represent the features to be linked in the current visual situation.


Visual Cortex Receptive Field Spike Train Local Field Potential Oscillatory Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aertsen, A.M.H.J., Gerstein, G.L. (1985): Evaluation of neuronal connectivity: sensitivity of cross correlation. Brain Res. 340, 341–354CrossRefGoogle Scholar
  2. Aertsen, A.M.H.J., Smolders, J.W.T., Johannesma, P.I.M. (1979): Neural representation of the acoustic biotope: on the existence of stimulus-event relations for sensory neurons. Biol. Cybern. 32, 175–185CrossRefGoogle Scholar
  3. Aertsen, A.M.H.J., Gerstein, G.L., Johannesma, P.I.M. (1986): From neuron to assembly: neuronal organization and stimulus representation. In: Brain Theory Palm, G; Aertsen, A.M.H.J. (eds.), ( Springer, Berlin, Heidelberg )Google Scholar
  4. Aertsen, A.M.H.J., Bonhoeffer, T., Krüger, J. (1987): Coherent activity in neuronal populations: analysis and interpretation. In: Physics of Cognitive Processes Caianiello E (ed) ( World. Scientific, Singapore ) pp. 1–34Google Scholar
  5. Aertsen, A.M.H.J., Gerstein, G.L., Habib, M.K., Palm, G. (1989): Dynamics of neuronal firing correlation: Modulation of “effective connectivity” J. Neurophysiol. 61, 900–917Google Scholar
  6. Aiple, F., Krüger, J. (1988): Neuronal synchrony in monkey striate cortex: interocular signal flow and dependency on spike rates. Exp. Brain Res. 72, 141–149CrossRefGoogle Scholar
  7. Altmann, L., Eckhorn, R., Singer, W. (1986): Temporal integration in the visual system: influence of temporal dispersion on figure-ground discrimination. Vis. Res. 26, 1949–1957CrossRefGoogle Scholar
  8. Arnett, D.W. (1975): Correlation analysis of units recorded in the cat dorsal lateral geniculate nucleus. Exp. Brain Res. 24, 111–130CrossRefGoogle Scholar
  9. Basar, E. (1980): EEG-Brain Dynamics. ( Elsevier, Amsterdam )Google Scholar
  10. Basar, E. (1983): Synergetics of neuronal populations. A survey on experiments. In: Synergetics of the Brain, ed., E. Basar, H. Flohr, H. Haken, A. Mandell ( Springer, Berlin, Heidelberg ) 183–200Google Scholar
  11. Basar, E. (1988): EEG-dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Dynamics of sensory and cognitive processing by the brain, E. Basar (ed) ( Springer, Berlin, Heidelberg ) pp. 30–55CrossRefGoogle Scholar
  12. Basar, E., Basar-Eroglu, C., Röschke, J., Schütt, A. (1989): The EEG is a quasi-deterministic signal anticipating sensory-cognitive tasks. In Brain Dynamics, ed. by E. Basar, T.H. Bullock, Springer Ser. Brain Dynamics, vol. 2: ( Springer, Berlin, Heidelberg ) pp. 43–71Google Scholar
  13. Bauer, R. (1982): A high probability of an orientation shift between layers 4 and 5 in central parts of the cat striate cortex. Exp. Brain Res. 48, 245–255ADSCrossRefGoogle Scholar
  14. Bauer, R., Fischer, W.H. (1987): Continuity or incontinuity of orientation columns in visual cortex: A critical evaluation of published and unpublished data. Neurosci. 22, 841–847CrossRefGoogle Scholar
  15. Bauer, R., Dow, B.M., Snyder, A.Z., Vautin, R.G. (1983): Orientation shift between upper and lower layers in monkey visual cortex. Exp. Brain Res. 50, 133–145CrossRefGoogle Scholar
  16. Bauer, R., Eckhorn, R., Jordan, W., Arndt, M. (1987): Iso-and cross-orientation columns in cat striate cortex: A re-examination with simultaneous single-and multi-unit recordings. Proc. EBBS Conf. Novi Sad, Jugoslavia, T10Google Scholar
  17. Bauer, R., Eckhorn, R., Jordan, W. (1989a): Iso-and Cross-orientation columns in cat striate cortex: A re-examination with simultaneous single-and multi-unit recordings. Neurosci 30, 733–740CrossRefGoogle Scholar
  18. Bauer, R., Eckhorn, R., Jordan, W. (1989b): Different directional anisotropies for texture and grating stimuli in supragranular cells of cat striate cortex: A basis for figure-ground separation? In: Elsner N, Singer W (eds), Dynamics and Plasticity in Neuronal Systems, Thieme-Verlag, Stuttgart, New York, p. 350Google Scholar
  19. Baxter, W., Dow, B.M, (1988): Centric models of the orientation map in primate visual cortex. In Neural Information Processing Systems — Neural and Synthetic. Anderson DZ (ed), ( Amer. Inst. Phys., New York ) pp 62–72Google Scholar
  20. Bullier, J., Kennedy, H., Salinger, W. (1984): Branching and laminar origin of projections between visual cortical areas in the cat. J. Comp. Neurol. 228 329–341CrossRefGoogle Scholar
  21. Bullier, J. McCourt, M.E., Henry, G.H. (1988): Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat. Exp. Brain Res. 70, 90–98Google Scholar
  22. Bullock, T.H. (1988): Compound potentials of the brain, ongoing and evoked: perspectives from comparative neurology. In: Basar E (ed), Dynamics of sensory and cognitive processing by the brain, Springer-Verlag, pp. 3–18CrossRefGoogle Scholar
  23. Bullock, T.H., Basar, E. (1988): Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. Rev. 13, 57–75Google Scholar
  24. Cracco, R.Q., Cracco, J.B. (1978): Visual evoked potentials in man: early oscillatory potentials. Electroencephal. Clin. Neurophysiol. 45, 731–739CrossRefGoogle Scholar
  25. Creutzfeldt, O.D. Watanabe, S., Lux, H.D. (1966): Relation between EEG-phenomena and potentials of single cells. Part I and II. Electroenceph. Clin. Neurophysiol. 20, 1–37CrossRefGoogle Scholar
  26. Damasio, A.R. (1989a): The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones. Neural Computation 1, 121–129CrossRefGoogle Scholar
  27. Damasio, A.R. (1989b): Time-locked multiregional retroactivation: A systems level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62CrossRefGoogle Scholar
  28. Donaldson, LM.L., Nash, J.R.G. (1975): The effect of a chronic lesion in cortical area 17 on the visual responses of units in area 18 of the cat. J. Physiol. 245, 325–332Google Scholar
  29. Dow, B.M., Bauer, R. (1984): Retinotopy and orientation columns in the monkey: a new model. Biol. Cybern. 49, 189–200CrossRefGoogle Scholar
  30. Dreher, B., Cottee, L.J. (1975): Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17. J. Neurophysiol. 38, 735–750Google Scholar
  31. Eckhorn, R. (1987): Relating cortical structure and function with multi-electrode/correlation techniques: Investigation of column and patch-systems in cat’s visual cortex. Abstr Vol Confer on Dynamics of Sensory and Cognitive Processing by the Brain, West-BerlinGoogle Scholar
  32. Eckhorn, R., Pöpel, B. (1972a): A contribution to neuronal network analysis in cat lateral geniculateGoogle Scholar
  33. body: simultaneous recordings of maintained activity. Intern. J. Neurosci. 4 137–142Google Scholar
  34. Eckhorn, R., Pöpel, B. (1972b): Statistical network analysis of cat lateral geniculate body: cross-Google Scholar
  35. correlation and rate of transinformation. Eur. J. Physiol. (Suppl) 335, R85Google Scholar
  36. Eckhorn, R., Pöpel. B. (1975): Rigorous and extended application of information theory to the afferent visual system of the cat. II. Experimental results. Biol. Cybernetics 17, 7–17Google Scholar
  37. Eckhorn, R., Grasser, O.-J., Kröller, J., Pellnitz, K., Pöpel, B. (1976): Efficiency of different neuronal codes: Information transfer calculations for three different neuronal systems. Biol. Cybernetics 22, 49–60zbMATHCrossRefGoogle Scholar
  38. Eckhorn, R., Schneider, J. Keidel, R. (1986a): Real-time covariance computer for cell assemblies is based on neuronal principles. J. Neurosci. Meth. 18, 371–383CrossRefGoogle Scholar
  39. Eckhorn, R., Krause, F., Nelson, J.I. (1986b): The receptive field cinematogram: a multiple recep- tive field mapping technique for multiple microelectrode studies. Soc. Neurosci. Abstr. 36. 3Google Scholar
  40. Eckhorn, R., Bauer, R., Jordan, W., Epping, W., Arndt, M. (1987): Correlated activity and coding properties of neuron groups within vertical columns of the visual cortex: A multi-electrode study. 2nd IBRO-Congrs, Neurosci. 22 Suppl. 1306 PGoogle Scholar
  41. Eckhorn, R., Reitboeck, H.J. (1988): Assessment of cooperative firing in groups of neurons. In: Springer Series in Brain Dynamics E Basar. edit. Vol 1, Springer Verlag, Berlin, Heidelberg, pp. 219–227Google Scholar
  42. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J. (1988a): Are form-and motion-aspects linked in visual cortex by stimulus-evoked resonances? Multiple electrode and cross-correlation analysis in cat visual cortex. EBBS-Workshop on Visual Processing of Form and Motion, Tübingen, Confer. Vol, p. 7Google Scholar
  43. Eckhorn, R., Bauer, R., Brosch, M., Jordan, W., Kruse, W., Munk, M. (1988b): Functionally related modules of cat visual cortex show stimulus-evoked coherent oscillations: A multiple electrode study. Invest. Ophthalmol. Vis. Sci. 29, 331 (12)Google Scholar
  44. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J. (1988c): Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol. Cybernetics 60, 121–130CrossRefGoogle Scholar
  45. Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P. (1989a): Feature linking via stimulus-evoked oscillations: Experimental results from cat visual cortex and functional implications from a network model. Intern. Conf. Neural Networks, Washington. Conf. Vol. 1: 723–730CrossRefGoogle Scholar
  46. Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P. (1989b): A neural network for feature linking via synchronous neural activity. In: Models of Brain Function. R.M.J. Cotterill (ed.). Cambridge Univ. Press, pp. 255–272Google Scholar
  47. Eckhorn, R., Bauer, R., Reitboeck, H.J. (1989c): Global feature processing in the visual cortex can be analyzed by combining multiple single-cell and mass-activity recordings with signal correlation methods. Perception 18, A67Google Scholar
  48. Eckhorn, R., Bauer, R., Reitboeck, H.J. (1989d): Discontinuities in visual cortex and possible functional implications: Relating cortical structure and function with multi-electrode/correlation techniques. In Basar E, Bullock T.H. (eds), Springer Series in Brain Dynamics Vol 2, pp. 267–278Google Scholar
  49. Eckhorn, R., Munk, M., Kruse, W., Brosch. M. Jordan, W., Bauer, R. (1989e): Stimulus-evoked synchronizations between two visual cortex areas of the cat: A linking mechanism for different visual features? In: Elsner N. Singer W (eds), Dynamics and Plasticity in Neuronal Systems, Thieme-Verlag, Stuttgart New York, p. 349Google Scholar
  50. Eckhorn, R., Kruse, W., Brosch, M., Munk, M., Jordan, W., Schanze, T., Bauer, R. (1989f): Pre-attentive feature linking between different cortex areas by stimulus-specific synchronizations? A multiple single-cell and mass-activity analysis in cat visual cortex. Perception 18, A29Google Scholar
  51. Eckhorn, R., Reitboeck, H.J., Dicke, P., Arndt, M., Kruse, W. (1990a): Feature linking across cortical maps via synchronization. In: Parallel Processing in Neural Systems and Computers, Eckmiller R (ed), Elsevier, Amsterdam, pp. 100–104Google Scholar
  52. Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P. (1990b): Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Computation 2, 293–307CrossRefGoogle Scholar
  53. Epping, W.J.M., Eggermont, J.J. (1987): Coherent neural activity in the auditory midbrain of the grassfrog. J. Neurophysiol. 57, 1464–1483Google Scholar
  54. Ferrer, J.M.R., Price, D.J., Blakemore, C. (1988): The organization of cortico-cortical projections from area 17 to area 18 of the cat’s visual cortex. Proc. Roy. Soc. (London) B 233, 77–98ADSCrossRefGoogle Scholar
  55. Freeman, W.J. (1975): Mass action in the nervous system. Academic Press, New YorkGoogle Scholar
  56. Freeman, W.J. (1979): Nonlinear gain mediating cortical stimulus-response relations. Biol. Cybernetics 33, 237–247CrossRefGoogle Scholar
  57. Freeman, W.J. (1981): A Physiological Hypothesis of Perception. Prospectives in Biology and Medicine 24, 561–592Google Scholar
  58. Freeman, W.J., (1987): Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150CrossRefGoogle Scholar
  59. Freeman, W.J., Skarda, C.A. (1985): Spatial EEG patterns, non-linear dynamics and perception: the Neo-Sherringtonian view. Brain Res. Rev. 10, 147–175Google Scholar
  60. Freeman, W.J., Van Dijk, B.W. (1987): Spatial patterns of visual cortical fast EEG during conditional reflex in a rhesus monkey. Brain Res. 422, 267–276CrossRefGoogle Scholar
  61. Freeman, W.J., Yao, Y., Burke, B. (1988): Central pattern generating and recognizing in olfactory bulb: A correlation learning rule. Neural Networks 1, 277–288CrossRefGoogle Scholar
  62. Gerstein, G.L., Aertsen, A.M.H.J., (1985): Representation of cooperative firing activity among simultaneously recorded neurons. J. Neurophysiol. 54, 1513–1528Google Scholar
  63. Gerstein, G.L., Perkel, D.H. (1972): Mutual temporal relationships among neuronal spike trains. Statistical techniques for display and analysis. Biophys. J. 12, 453–473CrossRefGoogle Scholar
  64. Gerstein, G.L., Bloom, M., Espinoza, I., Evanczuk, S., Turner, M. (1983): Design of a laboratory for multi-neuron studies. IEEE SMC 13, 668–676Google Scholar
  65. Gerstein, G.L., Aertsen, A., Bloom, M., Espinosa, I., Evanczuk, S., Turner, M. (1986): Multineuron experiments: observation of state in neural nets. Proceed Symposium Synergetics, Bavaria, W. Germany, Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  66. Gilbert, CD. (1985): Horizontal integrations in the neocortex. Trends Neurosci. 8, 160–165CrossRefGoogle Scholar
  67. Gilbert, C.D., Wiesel, T.N. (1983): Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3, 1116–1133Google Scholar
  68. Gilbert, C.D., Wiesel, T.N. (1987): Relationships between cortico-cortical projections, intrinsic cortical connections and orientation columns in cat primary visual cortex. Soc. Neurosci. Abstr. Vol. 13, 5. 9Google Scholar
  69. Gray, C.M., Singer, W. (1987a): Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. 2nd IBRO-Congrs, Neurosci Suppl, 1301 PGoogle Scholar
  70. Gray, C.M., Singer, W. (1987b): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc. Neurosci. Abstr. 404. 3Google Scholar
  71. Gray, C.M., Skinner, J.E. (1988): Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Exp. Brain Res. 69, 378–386CrossRefGoogle Scholar
  72. Gray, C.M., Koenig, P., Engel, A., Singer, W. (1988): Nonlinear cooperativity mediating oscillatory responses in cat visual cortex: local and global interactions. In: Sense Organs, Interface Between Environment and Behaviour, Elsner N, Barth FG (eds). Proc 16th Göttingen Neurobiol. Conf. Thieme Stuttgart New York, 375Google Scholar
  73. Gray, C.M., König, P., Engel, A.K., Singer, W. (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337ADSCrossRefGoogle Scholar
  74. Gray, C.M., Singer, W. (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Nat. Acad. Sci. USA. 86, 1698ADSCrossRefGoogle Scholar
  75. Green, M. (1986): What determines correspondence strength in apparent motion? Vision Res. 26, 599–607CrossRefGoogle Scholar
  76. Grossberg, S. (1976): Adaptive pattern classification and universal recording: II. Feedback, Expectation, Olfaction, Illusions. Biol. Cybern. 23, 187–202zbMATHMathSciNetCrossRefGoogle Scholar
  77. Grossberg, S. (1980): How does a brain build a cognitive code? Psychol. Rev. 87, 1–51Google Scholar
  78. Grossberg, S. (1983a): The quantized geometry of visual space: The coherent computation of depth, form, and lightness, Behavioural Brain Sci. 6, 625–692CrossRefGoogle Scholar
  79. Grossberg, S. (1983b): Neural substrates of binocular form perception: filtering, matching, diffusion and resonance. In Basar E, Flohr H, Haken H, Mandell A.J. (eds), Synergetics of the Brain, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 274–298Google Scholar
  80. Harris, F.J. (1978): On the use of windows for harmonic analysis with the discrete fourier transform. Proc IEEE. 66, 51–83ADSCrossRefGoogle Scholar
  81. Horridge, G.A. (1987): The evolution of visual processing and the construction of seeing systems. Proc. R. Soc. (London) B, 230, 279–292ADSCrossRefGoogle Scholar
  82. Hubel, D.H., Wiesel, T.N. (1962): Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154Google Scholar
  83. Hubel, D.H., Wiesel, T.N. (1963): Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165, 559–568Google Scholar
  84. Johannesma, P., Aertsen, A., van den Boogaard, H., Eggermont, J., Epping, W. (1986): From synchrony to harmony: ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Brain Theory, Palm G, Aertsen A (ed), Springer-Verlag, Berlin Heidelberg, pp. 25–47CrossRefGoogle Scholar
  85. Julesz, B. (1981): A theory of preattentive texture discrimination based on first order statistics of textons. Biol. Cybern. 41. 131–138zbMATHMathSciNetCrossRefGoogle Scholar
  86. Kammen, D.M., Holmes, P.J., Koch, C. (1989): Cortical architecture and oscillations in neuronal networks: feedback versus local coupling. In: Models of Brain Function. R.M.J. Cotterill (ed.). Univ. Press. Cambridge, New York, Melbourne, pp. 273–284Google Scholar
  87. Koenderink, J. (1984): The concept of local sign. In van Doom AJ, van de Grind WA, Koenderink J (eds), Limits in Perception. Utrecht, VNU Sci Press, pp. 495–549Google Scholar
  88. Krause, F., Eckhorn, R. (1983a): Receptive fields for motion stimuli (RFM) determined for different types of cat visual neurons. Neurosci. Lett. (Suppl) 14, 209Google Scholar
  89. Krause, F., Eckhorn, R. (1983b): A new method for the measurement of visual receptive fields. Perception 12, Suppl.Google Scholar
  90. Krause, F., Gonzalez, F., Nelson, J.I., Eckhorn, R. (1987): A fast method for predicting coding properties of visual cortical simple cells. Perception 16, Suppl., 262Google Scholar
  91. Krause, F., Nelson, J.I., Gonzalez, F., Eckhorn, R. (1988): Simultaneous signalling of form and motion in cat visual cortex? Conf. Abstr. Vol. “Visual Processing of Form and Motion”: P8Google Scholar
  92. Kraut, M.A., Arezzo, J.C., Vaughan, H.G., (1985): Intracortical generators of the flash VEP in monkeys. Electroenceph clin Neurophysiol 62, 300–312CrossRefGoogle Scholar
  93. Krüger, J. (1983): Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev. Physiol. Biochem. Pharmacol. 98, 177–233CrossRefGoogle Scholar
  94. Krüger, J., Aiple, F. (1988): Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. J Neurophysiol. 60, 798–828Google Scholar
  95. Krüger, J., Aiple, F. (1989): The connectivity underlying the orientation selectivity in the infragranular layers of monkey striate cortex. Brain Res 477, 57–65CrossRefGoogle Scholar
  96. Leferink, J., Eckhorn, R., Nelson, J.I., Wagner, H-J. (1987): Characterization of patchy projection systems between cortical areas: A combined multi-electrode and HRP study in cat’s visual cortex. 2nd IBRO-Congrs, Neurosci. 22 Suppl. 1305 PGoogle Scholar
  97. Legéndy, C.R., Salcman, M. (1985): Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol 53, 926–939Google Scholar
  98. Lohmann, H., Eckhorn, R., Reitboeck, H.J. (1986): Receptive fields evaluated for visual evoked intracortical potentials. Proc. ENA Sat. Vision Conf. Lyon, France, p. 40Google Scholar
  99. Lohmann, H., Eckhorn, R., Reitboeck, H.J. (1988): Visual receptive fields of local intracortical potentials. J. Neurosci. Meth. 25, 29–44CrossRefGoogle Scholar
  100. MacKay, D.M., (1962): Self-organization in the time domain. In: Self-Organizing Systems, Yovits MC, Jacobi GT, Goldstein GD (eds), Spartan, Washington, pp. 37–48Google Scholar
  101. Matsubara, J., Cynader, M., Swindale, N.V., Stryker, M.P. (1985): Intrinsic projections within visual cortex: evidence for orientation-specific local connections. Proc. Natl. Acad. Sci. USA. 82, 935–939ADSCrossRefGoogle Scholar
  102. Melssen, W.J., Epping, W.J.M. (1987): Detection and estimation of neural connectivity based on crosscorrelation analysis. Biol Cybern 57, 403–414CrossRefGoogle Scholar
  103. Mitzdorf, U. (1985): Current source density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100Google Scholar
  104. Mitzdorf, U. (1987): Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Intern. J. Neurosci. 33, 33–59CrossRefGoogle Scholar
  105. Mountcastle, V.B. (1957): Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434Google Scholar
  106. Mountcastle, V.B. (1978): An organizing principle for cerebral function: The unit module and the distributed system. In Edelman GM, Mountcastle VB (eds), The Mindful Brain, MIT Press, Cambridge, MassGoogle Scholar
  107. Mountcastle, V.B., Poggio, G.F., Reitboeck, H.J., Georgopoulos, A.P., Johnson, K.O., Longer-beam, M.B., Steinmetz, M.A., Phillips, J.R., Brandt, D.K., Habbel, C.G., (1987): A system for multiple microelectrode, recording from the neocortex of waking monkeys. Proc. Soc. Neurosci. p. 629Google Scholar
  108. Nelson, J.I. (1985): The cellular basis of perception. In Rose D, Dobson VG (eds), Models of the Visual Cortex. Wiley, New York, pp. 108–112Google Scholar
  109. Nelson, J.I., Frost, B.J., (1985): Intracortical facilitation among cooriented, co-axially aligned simple cells in cat striate cortex. Exp. Brain Res. 61, 54–61CrossRefGoogle Scholar
  110. Nelson, J.I., Munk, M., Bullier, J., Eckhorn, R. (1989): Functional connectivity revealed in and outside of receptive field overlap by 3 cross-correlation techniques. Soc. Neurosci. Abstr. Vol. 15, Part 2, p. 157 (119.16)Google Scholar
  111. Othmer, H.G. (1984): Synchronization, phase-locking and other phenomena in coupled cells. In: Temporal Order, Rensing L, Jaeger NI (eds), Springer-Verlag, Berlin, Heidelberg, New York, pp. 130–143Google Scholar
  112. Pabst, M., Reitboeck, H.J., Eckhorn, R. (1989): A model of pre-attentive region definition in visual patterns. In: Models of Brain Function, R.M.J. Cotterill (ed.), Cambridge Univ. Press.Google Scholar
  113. Palm, G., Aertsen, A.M.H.J., Gerstein, G.L. (1988): On the significance of correlations among neuronal spike trains. Biol Cybern 59, 1–11zbMATHMathSciNetCrossRefGoogle Scholar
  114. Payne, B.R., Berman, N., Murphy, E.H. (1981): Organization of direction preferences in cat visual cortex. Brain Res. 211, 445–450CrossRefGoogle Scholar
  115. Petsche, H, Pockberger, H., Rappelsberger, P. (1988): Cortical structure and electrogenesis. In: Basar E (ed), Dynamics of sensory and cognitive processing by the brain, Springer-Verlag, pp. 123–139CrossRefGoogle Scholar
  116. Pollen, D.A., Ronner, S.F. (1975): Periodic excitability changes across the receptive fields of com- plex cells in the striate and parastriate cortex of the cat. J. Physiol. (London) 245, 667–697Google Scholar
  117. Reichardt, W. (1957): Autokorrelations-Auswertung als Funktionsprinzip des Zentrainervensys-tems (bei der optischen Wahrnehmung eines Insektes). Z. Naturforsch. 126, 448–457Google Scholar
  118. Reichardt, W. (1961): Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory Communication. MIT Press, Cam-bridge, MA, pp. 303–317Google Scholar
  119. Reichardt, W. Poggio, T. (1979): Figure-ground discrimination by relative movement in the visual system of the fly. Biol. Cybern. 35, 81–100CrossRefGoogle Scholar
  120. Reichardt, W., Poggio, T., Hausen, K. (1983): Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybern. 46 (Suppl): 1–30CrossRefGoogle Scholar
  121. Reitboeck, H.J. (1983a): A 19-channel matrix drive with individually control-lable Fiber microelectrodes for neurophysiological applications. IEEE SMC 13, 676–682Google Scholar
  122. Reitboeck, H.J. (19836): Fiber microelectrodes for electrophysiological recordings. J. Neurosci. Meth. 8, 249–262Google Scholar
  123. Reitboeck, H.J., (1983c): A multi-electrode matrix for studies of temporal signal correlations within neural assemblies. In Basar E, Flohr H, Haken H, Mandell A (eds), Synergetics of the Brain. Springer-Verlag, Berlin Heidelberg, New York, pp. 174–182Google Scholar
  124. Reitboeck, H.J. (1988): Neural mechanisms of pattern recognition. In Sensory Processing in the Mammalian Brain: Neural Substrates and Experimental Strategies. Lund J (ed), Oxford Univ. Press, pp. 420–465Google Scholar
  125. Reitboeck, H.J., Adamczak, W., Eckhorn, R., Muth, P., Thielmann, R., Thomas, U. (1981): Multiple single-unit recording: Design and test of a 19-channel micro-manipulator and appropriate fiber electrodes. Neurosci. Lett. 7, S148Google Scholar
  126. Reitboeck, H.J., Eckhorn, R., Pabst, M. (1987): A model of figure/ground separation based on correlated neural activity in the visual system. In: Synergetics of the Brain, H Haken, ed, Springer-Verlag, Berlin, Heidelberg, New York pp. 44–54Google Scholar
  127. Reitboeck, H.J., Pabst, M., Eckhorn, R. (1988): Texture description in the time domain. In Compu- ter Simulations in Brain Science. Cotterill MJ (ed), Cambridge University Press, pp. 479–494Google Scholar
  128. Salin, P.A., Bullier, J., Kennedy, H. (1989): Convergence and divergence in the afferent projections to cat area 17. J. Comp. Neurol. 283, 486–512CrossRefGoogle Scholar
  129. Schneider, J., (1980): Correlator: Pollux. Philipps-Univ, Deptm Biophysics, Internal Report Schneider, J., Eckhorn, R., Reitboeck, H. J. (1983): Evaluation of neuronal coupling dynamics. Biol. Cybernetics 46, 129–134Google Scholar
  130. Schwartzkroin, P.A. (1983): Mechanisms of cwell synchronization in epileptiform activity. Trends in Neurosci. 6, 157–160CrossRefGoogle Scholar
  131. Shaw, G.L., Harth, E., Scheibel, A.B. (1982): Cooperativity in brain function: Assemblies of approximately 30 neurons. Exper. Neurol. 77, 324–358CrossRefGoogle Scholar
  132. Sherk, H. (1978): Area 18 cell responses in cat during reversible inactivation of area 17. J. Neurophysiol. 41, 204–215Google Scholar
  133. Singer, W. (1988): Pattern recognition and self-organization in biological biological systems. In: Processing Structures for Perception and Action, Marko H, Hauske G, Struppler A (eds). VCH Verlagsgesellschaft, Weinheim, pp. 1–18Google Scholar
  134. Singer, W., Gray, C.M., Engel, A., König, P. (1988) Spatio-temporal distribution of stimulus-specific oscillations in the cat visual cortex II: Global interactions. Soc. Neurosci. Abstr. Vol. 14, 899Google Scholar
  135. Sporns, O., Gally, J.A., Reeke, G.N., Edelman, G.M. (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc. Natl. Acad. Sci. (USA) 86, 7265–7269ADSCrossRefGoogle Scholar
  136. Symonds, L.L., Rosenquist, A.C. (1984): Laminar origins of visual cortical connections in the cat. J. Comp. Neurol. 229, 39–47CrossRefGoogle Scholar
  137. Tanaka, K. (1983): Cross-correlation analysis of geniculostriate neuronal relationship in cat. J. Neurophysiol. 49, 1303–1318Google Scholar
  138. Toet, A., Blom, J., Koenderink, J.J., (1987): The construction of a simultaneous functional order in nervous systems. I. Relevance of signal covariances and signal coincidences in the construction of a functional order. Biol. Cybern. 57, 115–125zbMATHMathSciNetCrossRefGoogle Scholar
  139. Toyama, K., Kimura, M., Tanaka, K. (1981): Organization of cat visual cortex as investigated by cross-correlation technique. J. Neurophysiol. 46, 202–214Google Scholar
  140. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N. (1986): Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170Google Scholar
  141. van Kan, P.L.E., Scobey, R.F., Gabor, A.J. (1985): Response covariance in cat visual cortex. Exp. Brain Res. 60, 559–563CrossRefGoogle Scholar
  142. von der Malsburg, C. (1983): How are nervous structures organized? In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the Brain, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 238–249Google Scholar
  143. von der Malsburg, C. (1988): Pattern recognition by labeled graph matching. Neural Networks 1, 141–148CrossRefGoogle Scholar
  144. von der Malsburg, C., Singer, W. (1988): Principles of cortical network organization. In: Rakic P, Singer W (eds) Neurobiology of Neocortex. Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 69–99Google Scholar
  145. Weyand, T.G., Malpeli, J.G., Lee, C., Schwark, H.D. (1987): Cat area 17: I V.Google Scholar
  146. Two types of corti-cotectal cells defined by controlling geniculate inputs. J. Neurophysiol. 56, 1102–1108Google Scholar
  147. Whittaker, S.G., Siegfried, J.B., (1983): Origin of wavelets in the visual evoked potential. Elec- troencephal. Clin. Neurophysiol. 55, 91–101CrossRefGoogle Scholar
  148. Wilson, J.T.L., Singer, W. (1981): Simultaneous visual events show a long-range spatial interaction. Perception & Psychophys. 30, 107–113CrossRefGoogle Scholar
  149. Zeki, S., Shipp, S. (1988): The functional logic of cortical connections, Nature 335, 311–317ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Reinhard Eckhorn
    • 1
  1. 1.Department of BiophysicsPhilipps UniversityMarburgGermany

Personalised recommendations