Advertisement

The Structure—Function Problem in Visual Cortical Circuitry Studied by Cross-Correlation Techniques and Multi-Channel Recordings

  • Keisuke Toyama
Part of the Springer Series in Synergetics book series (SSSYN, volume 49)

Abstract

The anatomical structure of a neural net and its physiological function are usually investigated by independent experimental techniques. This means that only average relationships between the two features can be deduced. A major problem of modern neuroscience is to more directly link together these two types of knowledge.

Keywords

Visual Cortex Cortical Cell Simple Cell Cortical Inhibition Neuronal Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aersten, M.H., Gerstein, G.L. (1985): Evaluation of neuronal connectivity: Sensitivity of cross-correlation. Brain Res. 340, 341–354CrossRefGoogle Scholar
  2. Bach, M., Kruger, J. (1986): Correlated neuronal variability in monkey visual cortex revealed by a multi-microelectrode. Exp. Brain Res. 61, 451–456CrossRefGoogle Scholar
  3. Blasdel, G.G., Salama, G. (1986): Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585CrossRefADSGoogle Scholar
  4. Cope, T.C., Fetz, E.E., Matsumura, M. (1987): Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J. Physiol. Lond, in pressGoogle Scholar
  5. Fetz, E.E., Gustafsson, B. (1983): Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J. Physiol. Lond. 341, 387–410Google Scholar
  6. Gilbert, C.D. (1983): Microcircuitry of the visual cortex. Ann. Rev. Neurosci. 6, 217–247CrossRefGoogle Scholar
  7. Grinvald, A., Manker, A., Segal, M. (1982): Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J. Physiol. 333, 269–291Google Scholar
  8. Grinvald, A., Segel, M., Kuhnt, U., Manker, A., Anglister, L., Freeman, J.A., Hildesheim, R. (1986): Real-time optical mapping of neuronal activity in vertebrate CNS in vitro and in vivo. In Optical methods in cell physiology, ed. by P.D. Weer, B.M. Salzberg ( Wiley, New York )Google Scholar
  9. Hubel, D.H., Wiesel, T.N. (1962): Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. Lond. 160, 106–154Google Scholar
  10. Hubel, D.H., Wiesel, T.N. (1965): Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289Google Scholar
  11. Humphery, A.L., Sur, M., Uhlrich, D.J., Sherman, S.M. (1985): Projection patterns of individual X- and Y- cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 233, 159–189CrossRefGoogle Scholar
  12. Jankowska, E., Roberts, W.J. (1972) Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J. Physiol. (London) 222, 623–642Google Scholar
  13. Kirkwood, P.A. (1979): On the use and interpretation of cross-correlation measurements in the mammalian central nervous system. J. Neurosci. Methods, 1, 107–132CrossRefGoogle Scholar
  14. Komatsu, Y., Nakajima, S., Toyama, K., Fetz, E. (1988): Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex. Brain Res. 442, 359–362CrossRefGoogle Scholar
  15. Kruger, J., Aiple, F. (1988): Multimicroelectrode investigation of monkey striate cortex: Spike train correlations in the infragranular layers, J. Neurophysiol. 60, 798–828Google Scholar
  16. Kruger, J., Bach, M. (1981): Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp. Brain Res. 41, 191–194CrossRefGoogle Scholar
  17. Lee, B.B., Cleland, B.G., Creutzfeldt, O.D. (1977): The retinal input to cells in area 17 of the cat’s cortex. Exp. Brain Res. 30, 527–538CrossRefGoogle Scholar
  18. Levick, W.R., Cleland, B.G., Dubin M.W. (1972): Lateral geniculate neurons of cat: Retinal inputs and physiology. Invest. Ophthalmol. 11, 302–311Google Scholar
  19. Michalski, A.G., Gerstein, L. Czarkowska, J., Tarnecki, R. (1983): Interactions between cat striate cortex neurons. Exp. Brain Res. 51, 97–107CrossRefGoogle Scholar
  20. Mitzdorf, U., Singer, W. (1978): Prominent excitatory pathways in the cat visual cortex (A 17 and 18): a current source density analysis of electrically evoked potentials. Exp. Brain Res. 33, 371–394CrossRefGoogle Scholar
  21. Perkel, D.H., Gerstein, G.L., Moore, G.P. (1967a): Neuronal spike trains and stochastic point processes. I. Single spike train. Biophys. J. 7, 391–418CrossRefGoogle Scholar
  22. Perkel, D.H., Gerstein, G.L., Moore, G.P. (1967b): Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440CrossRefGoogle Scholar
  23. Blasdel, G.G., Salama, G. (1986): Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585CrossRefADSGoogle Scholar
  24. Poggio, G., Poggio, T. (1984): The analysis of stereopsis. Ann. Rev. Neurosci. 7, 379–412CrossRefGoogle Scholar
  25. Ross, W.N., Krauthamer, N. (1984): Optical measurements of potential changes in axons and pro-cesses of neurons of a barnacle ganglion. J. Neurosci. 4, 659–672Google Scholar
  26. Saggau, P., Galvan, M., Bruggencate, G.T. (1986): Long-term potentiation in guinea pig hippocam-pal slices monitored by optical recording of neuronal activity. Neurosci. Lett. 69, 53–58CrossRefGoogle Scholar
  27. Stone, J., Dreher, B. (1973): Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol. 36, 551–567Google Scholar
  28. Tanaka, K. (1983): Cross-correlation analysis of geniculostriate neuronal relationships in cats. J. Neurophysiol. 49, 1303–1318Google Scholar
  29. Poggio, G., Poggio, T. (1984): The analysis of stereopsis. Ann. Rev. Neurosci. 7, 379–412CrossRefGoogle Scholar
  30. Toyama, K., Kimura, M., Tanaka, K. (1981b): Organization of cat visual cortex as investigated by cross-correlation techniques. J. Neurophysiol. 46, 202–214Google Scholar
  31. Toyama, K. Matsunami, K., Onho, T., Tokashiki, S. (1974): An intracellular study of neuronal organization in the visual cortex. Exp. Brain Res. 21, 45–66CrossRefGoogle Scholar
  32. Toyama, K., Kimura, M., Tanaka, K. (1981a): Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J. Neurophysiol. 46, 191–201Google Scholar
  33. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N. (1986): Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170Google Scholar
  34. Tsumoto, T., Creutzfeldt, O.D., Legendy, C.R. (1978): Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with appendix on geniculocortical mono-synaptic connections). Exp. Brain Res. 32, 345–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Keisuke Toyama
    • 1
  1. 1.Department of PhysiologyKyoto Prefectural University of MedicineKyoto, 602Japan

Personalised recommendations