Advertisement

Endocytosis pp 489-496 | Cite as

Glycosylated Polymers as Carriers for Targeting Antiviral and Antiparasite Drugs

  • Michel Monsigny
  • Annie-Claude Roche
  • Roger Mayer
  • Patrick Midoux
  • Eric Nègre
  • Edwige Bonfils
Conference paper
Part of the NATO ASI Series book series (volume 62)

Abstract

A therapeutic agent to be active must reach its target cell and more precisely the right compartment of the target cell. For a great majority of drugs, the compartment is either the cytosol or the nucleoplasm. When hydrophobic, a drug may cross the plasma membrane to enter the cytosol. However when hydrophilic, a drug is not membrane permeant and usually will enter the cytosol from an intracellular organelle. On these bases, drug targeting may enhance the efficacy of a hydrophilic drug. The rationale of drug targeting using macromolecular glycoconjugates includes the following considerations:
  • a small molecular weight hydrophilic drug is usually lost in vivo within a few minutes, while bound to a macromolecular carrier it will stay longer in the blood,

  • a macromolecular carrier containing carbohydrate moieties as a recognition signal will be recognized by cell surface receptors (lectins) with a specificity depending on the nature of the carbohydrate moiety used and on the type of lectin present on the target cell. Therefore the amount of drug at the level of the target cell will be much higher than when the free drug is used,

  • a carbohydrate moiety used as recognition signal allows the binding and the internalization of the drug-carrier conjugate because membrane lectins usually mediate endocytosis,

  • the drug must be attached to the carrier in such a way that it will be linked until its release in a selected organelle inside the target cell.

Keywords

Recognition Signal Carbohydrate Moiety Mouse Peritoneal Macrophage Biological Response Modifier Lewis Lung Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASHWELL G. & HARFORD J.(1982) Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 51, 531–554PubMedCrossRefGoogle Scholar
  2. DAUSSIN F., BOSCHETTI E., DELMOTTE F. & MONSIGNY M. (1988) p-Benzylthiocarbamoyl-aspartyl-daunorubicin substituted polytrisacryl. A new drug acid-labile arm carrier conjugate. Eur. J. Biochem. 176, 625–628PubMedCrossRefGoogle Scholar
  3. DELMOTTE F., LESCANNE P.J., DAUSSIN F., ROCHE A.C., MIDOUX P. & MONSIGNY M. (1985) Préparation et propriétés de systèmes covalents drogue-bras-vecteur. Actualités Chimie Thérapeutique 12,121–140Google Scholar
  4. DERRIEN D., MIDOUX P., PETIT C., NEGRE E., MAYER R., MONSIGNY M.& ROCHE A.C. (1989) Muramyl dipeptide bound to poly-L-lysine substitued with mannose and gluconoyl residues as macrophage activators. Glycoconjugate J. 6, 241–255CrossRefGoogle Scholar
  5. HELENE C. & TOULME J.J. (1990) Specific regulation of gene expression by antisense, sense and anti-gene nucleic acids. Biochim. Biophys. Acta 1049, 99–125PubMedCrossRefGoogle Scholar
  6. FIUME L., BASSI B., BUSI C., MATTIOLI A.& SPINOSA G.(1986) Drug targeting in antiviral chemotherapy. A chemical stable conjugate of 9-β-D- arabinofuranosyl-adenine 5’-monophosphate with lactosaminated albumin accomplishes a selective delivery of the drug to liver cells. Biochem. Pharmacol. 35, 967–972PubMedCrossRefGoogle Scholar
  7. MIDOUX P., NEGRE E., ROCHE A.C., MAYER R., MONSIGNY M., BALZARINI J., DE CLERQ E., MAYER E., GHAFFAR A.& GANGEMI J.D.(1990) Drug targeting: anti-HSV1 activity of mannosylated polymer-bound 9-(2-phosphonyl-methoxy -ethyl)-adenine. Biochem. Biophys. Res. Commun. 167,1044–1049PubMedCrossRefGoogle Scholar
  8. MIDOUX P., ROCHE A.C.& MONSIGNY M.(1986) Estimation of the degradation of endocytosed material by flow cytofluorometry using two neoglycoproteins containing different numbers of fluorescein molecules. Biol. Cell 58, 221–226PubMedCrossRefGoogle Scholar
  9. MIDOUX P., ROCHE A.C.& MONSIGNY M.(1987) Quantitation of the binding, uptake, and degradation of fluoresceinylated neoglycoproteins by flow cytometry. Cytometry 8, 327–334PubMedCrossRefGoogle Scholar
  10. MITSUYA H., YARCHOAN R. & BRODER S. (1990) Molecular targets for AIDS therapy. Science 249, 1533–1544PubMedCrossRefGoogle Scholar
  11. MONSIGNY M., KIEDA C., ROCHE A.C.& DELMOTTE F.(1980) Preparation and biological properties of a covalent antitumor drug arm-carrier (DA.C conjugate). FEBS Letters 119,181–186PubMedCrossRefGoogle Scholar
  12. MONSIGNY M., ROCHE A.C.& BAILLY P. (1984a) Tumoricidal activation of murine alveolar macrophages by muramyl dipeptide substituted mannosylated serum albumin. Biochem. Biophys. Res. Commun. 121, 579–584PubMedCrossRefGoogle Scholar
  13. MONSIGNY M., ROCHE A.C., KIEDA C., MIDOUX P. & OBRENOVITCH A. (1988a) Characterization and biological implications of membrane lectins in tumor, lymphoid and myeloid cells. Biochimie 70,1633–1649PubMedCrossRefGoogle Scholar
  14. MONSIGNY M., ROCHE A.C.& MIDOUX P.(1984b) Uptake of neoglycoproteins via membranes lectin(s) of L 1210 cells. Evidence by quantitative flow cytometry and drug targeting.Biol. Cell 51,187–196PubMedCrossRefGoogle Scholar
  15. MONSIGNY M., ROCHE A.C.& MIDOUX M.(1988b) Endogenous lectins and drug targeting. Ann. N.Y. Acad, Sci. 414, 399–414CrossRefGoogle Scholar
  16. PETIT C., MONSIGNY M. & ROCHE A.C.(1990) Macrophage activation by muramyldipeptide bound to neoglycoproteins and glycosylated polymers: cytotoxic factor production. J.Biol.Response Modifiers 9, 33–43Google Scholar
  17. PIMPANEAU V., MIDOUX P., DURAND G., DE BAETSELIER P., MONSIGNY M. & ROCHE A.C. (1989) Endocytosis of α1-acid glycoprotein variants and of neoglycoproteins containing mannose derivatives by a mouse hybridoma cell line (2C11–12). Comparison with mouse peritoneal macrophages. Glycoconjugate J. 6, 561–574CrossRefGoogle Scholar
  18. PIMPANEAU V., MIDOUX P., MONSIGNY M.& ROCHE A.C.(1990) Characterization and isolation of an intracellular mannose specific receptor from the human promyelocyte HL60 cells. Carbohyd. Res., in the pressGoogle Scholar
  19. ROCHE A.C., BAILLY P.& MONSIGNY M.(1985a) Macrophage activation by MDP bound to neoglycoproteins: Metastasis eradication in mice. Invas. Metastasis 5, 218–232Google Scholar
  20. ROCHE A.C., BARZILAY M., MIDOUX P., JUNQUA S., SHARON N. & MONSIGNY M. (1983) Sugar-specific endocytosis of glycoproteins by Lewis lung carcinoma cells J. Cell Biochem. 22,131–140PubMedCrossRefGoogle Scholar
  21. ROCHE A.C., MIDOUX P., BOUCHARD P.& MONSIGNY M. (1985b) Uptake of neoglycoproteins containing 6-phosphomannose residues by human monocytes. FEBS Lett. 193, 63–68PubMedCrossRefGoogle Scholar
  22. ROCHE A.C., MIDOUX P., PETIT C., DERRIEN D., MAYER R. & MONSIGNY M. (1988) Macrophage activation by targeted biological response modifiers in Immunomodulators and non-specific host defense mechanisms against microbial infections, (K.N. MASIHI & W. LANGE, eds) Adv. Bioscience pp. 217–235. Pergamon Press, Oxford.Google Scholar
  23. ROCHE A.C., MIDOUX P., PIMPANEAU V., NEGRE E., MAYER R. & MONSIGNY M. (1990) Endocytosis mediated by monocyte and macrophage membrane lectins. Application to antiviral drug targeting. Res. Virol. 141, 243–249PubMedCrossRefGoogle Scholar
  24. ROCHE A.C. & MONSIGNY M. (1986) Macrophage activation by targeted biological response modifiers Ann. Inst. Pasteur; Immunol. 137C, 223–226CrossRefGoogle Scholar
  25. SHARON N.& LIS H.(1989) Lectins as cell recognition molecules. Science 246, 227–234PubMedCrossRefGoogle Scholar
  26. SHEN W.C. (1990) Acid-sensitive dissociation between poly-lysine and histaminemodified poly-glutamate as a model for drug releasing from carriers in endosomes. Biochim. Biophys. Acta 1034,122–124.PubMedCrossRefGoogle Scholar
  27. SHEN W.C.& RYSER H.J.P.(1981) C/s-aconityl spacer between daunomycin and macromolecular carrier: a model of sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem. Biophys. Res. Commun. 102,1048–1054PubMedCrossRefGoogle Scholar
  28. TENU J.P., ROCHE A.C., YAPO A., KIEDA C., MONSIGNY M. & PETIT J.F. (1982) Absence of cell surface receptors for muramylpeptides in mouse peritoneal macrophages. Biol. Cell 44,157–164Google Scholar
  29. TROUET A., BAURAIN R., DEPREZ-DE-CAMPENEERE D., MASQUELIER M. & PIRSON P. (1982a) Targeting of antitumour and antiprotozoal drugs by covalent linkage to protein carriersin Targeting of drugs (G. Gregoriadis, Senior J. & Trouet, eds) pp 19–30, Plenum, New-YorkGoogle Scholar
  30. TROUET A., MASQUELIER M., BAURAIN R.& DEPREZ-DE-CAMPENEERE D.(1982b) A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 79, 626–629PubMedCrossRefGoogle Scholar
  31. WILEMAN T., HARDING C. & STAHL P. (1985) Receptor-mediated endocytosis. Biochem. J. 232,1–14PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Michel Monsigny
    • 1
  • Annie-Claude Roche
    • 1
  • Roger Mayer
    • 1
  • Patrick Midoux
    • 1
  • Eric Nègre
    • 1
  • Edwige Bonfils
    • 1
  1. 1.Department of Endogenous Lectin and Glycoconjugate Biochemistry, Molecular Biophysics InstituteCNRS and UniversityOrléans Cedex 02France

Personalised recommendations