Skip to main content
Book cover

Endocytosis pp 325–332Cite as

Protein Handling from Apical and Basolateral Surfaces in Rat and Rabbit Renal Proximal Tubules

  • Conference paper
  • 156 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 62))

Abstract

For several years it has been known that low molecular weight proteins after glomerular filtration are taken up by the renal proximal tubule by endocytpsis and transferred into lysosomes (Straus 1964; Maunsbach 1966). However, the initial events i.e. the specificity of binding to the luminal plasma membrane are not very well understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjerke T, Christensen EI, Boye N (1989) Tubular handling of neurotensin in the rat kidney as studied by micropuncture and HPLC. Am J Physiol 256 (Renal Fluid Electrolyte Physiol 25):F100-F106

    Google Scholar 

  • Bjerke T, Nielsen S, Christensen EI, Sheikh MI (1990) Step-wise degradation of neurotensin in pars convoluta and pars recta proximal tubules. Abstracts, Xlth Internat Congr of Nephrology, Tokyo, Japan, 467A

    Google Scholar 

  • Bjerke T, Nielsen S, Hellfritzsch M, Christensen EI (1988) Renal tubular handling of epidermal growth factor in rat and rabbit, in Contributions to Nephrology: Kidney and Proteins in Health and Disease, Bianchi C, Bocci V, Carone FA, Rabkin R (eds) Karger Basel, 98–103

    Google Scholar 

  • Bomsel M, Prydz K, Parton RG, Gruenberg J, Simons K (1989) Endocytosis in filter-grown Madin-Darby canine kidney cells. J Cell Biol 109:3243–3258

    Article  PubMed  CAS  Google Scholar 

  • Carone FA, Christensen EI, Flouret G (1987) Degradation and transport of AVP by proximal tubule. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F1120-F1128

    Google Scholar 

  • Carone FA, Peterson DR (1980) Hydrolysis and transport of small peptides by the proximal tubule. Am J Physiol 238 (Renal Fluid Electrolyte Physiol 7):F151-F158

    Google Scholar 

  • Chamberlain MJ, Stimmler L (1967) The renal handling of insulin. J Clin Invest 46:911–919

    Article  PubMed  CAS  Google Scholar 

  • Christensen El, Carone FA, Rennke HG (1981) Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab Invest 44:351–358

    PubMed  CAS  Google Scholar 

  • Christensen El, Rennke HG, Carone FA (1983) Renal tubular uptake of protein: effect of molecular charge. Am J Physiol 244 (Renal Fluid Electrolyte Physiol 13):F436-F441

    Google Scholar 

  • Feria-Velasco A (1974) The ultrastructural bases of the initial stages of renal tubular excretion. Lab Invest 30:190–200

    PubMed  CAS  Google Scholar 

  • Just M, Röckel A, Stanjek A, Bode F (1975) Is there any transtubular reabsorption of filtered proteins in rat kidney? Naunyn-Schmiedeberg’s Arch Pharmacol 289:229–236

    Article  CAS  Google Scholar 

  • Kenny AJ, Maroux S (1982) Topology of microvillar membrane hydrolases of kidney and intestine. Physiol Rev 62:91–128

    PubMed  CAS  Google Scholar 

  • Kessel RG (1970) The permeability of dragonfly Malphigian tubule cells to protein using horseradish peroxidase as a tracer. J Cell Biol 47:299–303

    Article  PubMed  CAS  Google Scholar 

  • Maack T, Kinter WB (1969) Transport of protein by flounder kidney tubules during long-term incubation. Am J Physiol 216:1034–1043

    PubMed  CAS  Google Scholar 

  • Maack T, Mackensie DDS, Kinter WB (1971) Intracellular pathways of renal reabsorption of lysozyme. Am J Physiol 221:1609–1616

    PubMed  CAS  Google Scholar 

  • Maunsbach AB (1966) Absorption of 125l-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Ultrastruct Res 15:197–241

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Christensen EI (1985) Basolateral endocytosis of protein in isolated perfused proximal tubules. Kidney Int 27:39–45

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Nielsen S, Christensen EI (1985) Transtubular transport of proteins in rabbit proximal tubules. J Ultrastruct Res 92:133–145

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Nielsen S, Christensen EI (1986) Handling of lysozyme in isolated perfused proximal tubules. Am J Physiol 251 (Renal Fluid Electrolyte Physiol 20):F822-F830

    Google Scholar 

  • Nielsen S (1990) Time-course of proximal tubular processing of insulin. Abstracts, Xlth Internat Congr on Nephrology, Tokyo, Japan, 468A

    Google Scholar 

  • Nielsen S, Christensen EI (1989) Insulin absorption in renal proximal tubules: A quantitative immunocyto- chemical study. J Ultrastruct Molec Struct Res 102:205–220

    Article  CAS  Google Scholar 

  • Nielsen S, Nexø E, Christensen EI (1989) Absorption of epidermal growth factor and insulin in rabbit renal proximal tubules. Am J Physiol 256 (Endocrinol Metab 19):E55-E66

    Google Scholar 

  • Nielsen S, Nielsen JT (1988) Influence of flow rate and perfused load on insulin absorption in isolated proximal tubules. Am J Physiol 254 (Renal Fluid Electrolyte Physiol 23):F802-F812

    Google Scholar 

  • Nielsen S, Nielsen JT, Christensen EI (1987) Luminal and basolateral uptake of insulin in isolated, perfused, proximal tubules. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F857-F867

    Google Scholar 

  • Ottosen PD, Bode F, Madsen KM, Maunsbach AB (1979) Renal handling of lysozyme in the rat. Kidney Int 15:246–254

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Prydz K, Bomsel M, Simons K, Griffiths G (1989) Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J Cell Biol 109:3259–3272

    Article  PubMed  CAS  Google Scholar 

  • Peterson DR, Carone FA, Oparil S, Christensen EI (1982) Differences between renal tubular processing of glucagon and insulin. Am J Physiol 242 (Renal Fluid Electrolyte Physiol 11):F112-F118

    Google Scholar 

  • Rabkin R, Mahoney CA (1988) Hormones and the kidney, in Diseases of the Kidney, Schrier RW, Gottschalk CW (eds). Little, Brown and Co Boston Toronto, 309–355

    Google Scholar 

  • Straus W (1964) Cytochemical observations on the relationships between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase in intravenously injected horseradish peroxidase. J Cell Biol 20:497–507

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christensen, E.I., Nielsen, S. (1992). Protein Handling from Apical and Basolateral Surfaces in Rat and Rabbit Renal Proximal Tubules. In: Courtoy, P.J. (eds) Endocytosis. NATO ASI Series, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84295-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84295-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84297-9

  • Online ISBN: 978-3-642-84295-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics