Skip to main content

The Agricultural Use of Native Plants on Problem Soils

  • Chapter
Soil Mineral Stresses

Part of the book series: Monographs on Theoretical and Applied Genetics ((GENETICS,volume 21))

Abstract

The origin and evolution of our present crop plants has been the cause for much speculation and conjecture. Our crops are largely not the result of any clear plan of action: there probably were many false starts, failures, and dead ends during the domestication of those plants (Heiser 1981). Some of the questions related to crop domestication, such as “where” and “when”, are more easily answered, however, than others, such as “how” and “why” (Farrington and Urry 1985). Determining where and when crops were domesticated is accomplished by analysis and interpretation of physical evidence. Explaining how and why they were domesticated requires knowledge of motives and other intangible aspects of the people involved in the process of domestication. Thus, even though we may not agree on exactly how domestication occurred, there is general agreement that the process took place independently in several widely separated areas during the past 10000 years or so (Streuver 1971; Harlan 1975; Farrington and Urry 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel GH, McKenzie A J (1964) Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci 4: 157–161

    Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7: 1–85

    Article  Google Scholar 

  • Aronson J (1985) Economic halophytes — a global review. In: Wickens GE, Goodin JR, Field DV (eds) Plants for arid lands. Allen and Unwin, London, pp 177–188

    Google Scholar 

  • Aronson J (1989) Haloph — a data base of salt-tolerant plants of the world. Office of Arid Land Studies, University of Arizona, Tucson

    Google Scholar 

  • Bernstein L (1963) Salt tolerance of plants and the potential use of saline waters for irrigation. Desalination Research Conference. National Academy of Sciences-National Research Council Publ 942, Washington, pp 273–283

    Google Scholar 

  • BOSTID (Board on Science and Technology for International Development) (1990) Saline agriculture. Salt-tolerant plants for developing countries. National Academy Press, Washington

    Google Scholar 

  • Brooks RR, Malaisse F (1990) Metal-enriched sites of South Central Africa. In: Shaw A J (ed) Heavy metal tolerance in plants: Evolutionary aspects. CRC, Boca Raton, pp 53–73

    Google Scholar 

  • Cheeke PR (1976) Nutritional and physiological properties of saponins. Nutr Rep Int 13: 315–323

    CAS  Google Scholar 

  • Chen Z-Y, Scagel RK, Maze J (1986) A study of morphological variation inPseudotsuga menziesii in southwestern British Columbia. Can J Bot 64: 1654–1663

    Article  Google Scholar 

  • Chew FS, Rodman JE (1979) Plant resources for chemical defense. In: Rosenthal GA, Janzen DH (eds) Herbivores — their interaction with secondary metabolites. Academic Press, New York, pp 271–307

    Google Scholar 

  • Clarkson DT (1965) Calcium uptake by calcicole and calcifuge species in the genus Agrostis. Ecology 53: 427–435

    Article  Google Scholar 

  • Coxworth ECM, Salmon RE (1972) Kochia seed as a component of the diet of turkey poults: effects of different methods of saponin removal or inactivation. Can J Anim Sci 52: 721–729

    Article  CAS  Google Scholar 

  • Coxworth ECM, Bell JM, Ashford R (1969) Preliminary evaluation of Russian Thistle,Kochia and gardenAtriplex as potential high protein seed crops for semiarid areas. Can J Plant Sci 49: 427–434

    Article  Google Scholar 

  • Dewey DR (1960) Salt tolerance of twenty-five strains ofAgropyron. Agron J 52: 631–635

    Article  Google Scholar 

  • Dumancic D, Le Houerou HN (1981)Acacia cyanaphylla Lindl. as supplementary feed for small stock in Libya. J Arid Environ 4: 161–167

    Google Scholar 

  • Ellern SJ, Samish YB, Lachover D (1974) Salt and oxalic acid content of leaves of the saltbush Atriplex halimus in the northern Negev. J Range Manage 27: 267–271

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelly DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Evans LT (1980) The natural history of crop yield. Am Sci 68: 388–397

    Google Scholar 

  • Farrington IS, Urry J (1985) Food and the early history of civilization. J Ethnobiol 5: 143–157

    Google Scholar 

  • Figdore SS, Gabelman WH, Gerloff GC (1989) Inheritance of potassium efficiency, sodium substitution capacity, and sodium accumulation in tomatoes grown under low-potassium stress. J Am Soc Hortic Sci 114: 322–327

    CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61: 313–337

    Article  Google Scholar 

  • Gallagher JL (1985) Halophytic crops for cultivation at seawater salinity. Plant Soil 89: 323–326

    Article  Google Scholar 

  • Garbutt K (1986) Genetic differentiation in leaf and whole plant photosynthetic capacity and unit leaf rate among clones ofPhlox paniculata. Am J Bot 73: 1364–1371

    Article  Google Scholar 

  • Glenn EP, O’Leary JW (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant Cell Environ 7: 253–261

    CAS  Google Scholar 

  • Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991)Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065–1067

    Article  PubMed  CAS  Google Scholar 

  • Goodin JR (1979)Atriplex as a forage crop for arid lands. In: Ritchie GA (ed) New agricultural crops. Westview, Boulder, pp 133–148

    Google Scholar 

  • Gorham J (1990a) Salt tolerance in the Triticeae: ion discrimination in rye and triticale. J Exp Bot 41: 609–614

    Article  CAS  Google Scholar 

  • Gorham J (1990b) Salt tolerance in the Triticeae: K/Na discrimination inAegilops species. J Exp Bot 41: 615–621

    Article  CAS  Google Scholar 

  • Gorham J (1990c) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41: 623–627

    Article  CAS  Google Scholar 

  • Gorham J, McDonnell E, Budrewicz E, Wyn Jones RG (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36: 1021–1031

    Article  CAS  Google Scholar 

  • Gorham J, Bristol A, Young EM, Wyn Jones RG, Kashour G (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. J Exp Bot 41: 1095–1101

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31: 149–190

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676

    Article  PubMed  CAS  Google Scholar 

  • Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li+, Na+, and CI–) by Tamarix aphylla. Physiol Plant 73: 541–546

    Article  CAS  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Hartman HT, Flocker WJ, Kofranek AM (1981) Plant science. Growth, development, and utilization of cultivated plants. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Heiser CB Jr (1981) Seed to civilization. The story of food, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Hocking PJ (1982) Salt and mineral nutrient levels in fruits of two strand species,Cakile maritima andArctotheca populifolia, with special reference to the effect of salt on the germination of Cakile. Ann Bot 50: 335–343

    CAS  Google Scholar 

  • Hocking PJ, Pate JS (1977) Mobilization of minerals to developing seeds of legumes. Ann Bot 41: 1259–1278

    CAS  Google Scholar 

  • Islam MN, Wilson CA, Watkins TR (1982) Nutritional evaluation of seashore mallow seed,Kosteletzkya virginica. J Agric Food Chem 30: 1197–1198

    Article  Google Scholar 

  • Janzen DH (1979) New horizons in the biology of plant defenses. In: Rosenthal GA, Janzen DH (eds) Herbivores — their interaction with secondary metabolites. Academic Press, New York, pp 331–350

    Google Scholar 

  • Jones R (ed) (1970) The biology ofAtriplex. CSIRO, Canberra

    Google Scholar 

  • Kagi JHR, Nordberg M (1979) Metallothioneins. Birkhäuser, Basel

    Google Scholar 

  • Knowles PF, Lessman J, Bemis WP, Blase MG, Burns EE, Burrows WC, Copp JH, Creech RG, Fike WT, Garrett RE, Hill LD, Idso SB, Jolliff GD, Jones Q, Miller JF, Purcell JC, Robinson RG, Sampson RL, Sumner DR, Thompson AE, Voss RD, Wedin WF, Wolff IA (1984) Development of new crops: needs, procedures, strategies, and options. Council for Agricultural Science and Technology Rep 102, Ames, IA

    Google Scholar 

  • Larin IV (1947) USSR. In: Anonymous (ed) The use and misuse of shrubs as fodder. Joint Publ 10, Imperial Agricultural Bureaux, Oxford, pp 129–156

    Google Scholar 

  • Le Houerou HN (1986) Salt-tolerant plants of economic value in the Mediterranean Basin. Reclam Reveg Res 5: 319–341

    Google Scholar 

  • Li Y, Gabelman WH (1990) Inheritance of calcium use efficiency in tomatoes grown under low-calcium stress. J Am Soc Hortic Sci 115: 835–838

    CAS  Google Scholar 

  • Malcolm CV (1969) Use of halophytes for forage production on saline wasteland. J Aust Inst Agric Sci 35: 38–49

    Google Scholar 

  • Malcolm CV (1972) Establishing shrubs in saline environments. Western Australian Department of Agriculture Technical Bull 14, South Perth

    Google Scholar 

  • Malcolm CV, Clarke A J, Swaan TC (1984) Plant collections for saltland revegetation and soil conservation. Western Australian Department of Agriculture Technical Bull 65, South Perth

    Google Scholar 

  • Malik KA, Aslam Z, Naqvi M (1986) Kallar grass: a plant for saline land. Nuclear Institute for Agriculture and Botany, Faisalabad, Pakistan

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • McKell CM (ed) (1989) The biology and utilization of shrubs. Academic Press, New York

    Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108: 305–320

    Article  Google Scholar 

  • Meyer G, Schmitt JM, Bohnert HJ (1990) Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high salt. Mol Gen Genet 224: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Gedamu L (1990) Heavy metal resistance in transgenic plants expressing a human metallothionein gene. In: Lamb CJ, Beachy RN (eds) Plant gene transfer. Wiley-Liss, New York, pp 257–265

    Google Scholar 

  • Mudie PJ (1974) The potential economic uses of halophytes. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 565–597

    Google Scholar 

  • O’Leary JW (1984) The role of halophytes in irrigated agriculture. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 285–300

    Google Scholar 

  • O’Leary JW (1986) A critical analysis of the use of Atriplex species as crop plants for irrigation with highly saline water. In: Ahmad R, San Pietro A (eds) Prospects for biosaline research. University of Karachi, Karachi, pp 415–432

    Google Scholar 

  • O’Leary JW (1988) Saline environments and halophytic crops. In: Whitehead EE, Hutchinson CF, Timmermann BN, Varady RG (eds) Arid lands today and tomorrow. Westview, Boulder, pp 773–789

    Google Scholar 

  • O’Leary JW, Glenn EP, Watson MC (1985) Agricultural production of halophytes irrigated with seawater. Plant Soil 89: 311–321

    Article  Google Scholar 

  • Pasternak D, Danon A, Aronson JA, Benjamin RW (1985) Development of the seawater agriculture concept. Plant Soil 89: 337–348

    Article  Google Scholar 

  • Peterson PJ (1983) Adaptation to toxic metals. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic Press, New York, pp 51–69

    Google Scholar 

  • Sandhu GR, Aslam Z, Sakim M, Sattar A, Qureshi RH, Ahmad N, Wyn Jones RG (1981) The effect of salinity on the yield and composition of Diplackne fusca ( Kallar grass ). Plant Cell Environ 4: 177–181

    Google Scholar 

  • Schettini TM, Gabelman WH, Gerloff GC (1987) Incorporation of phosphorus efficiency from exotic germplasm into agriculturally adapted germplasm of common bean (Phaseolus vulgaris L.). In: Gabelman WH, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 559–568

    Chapter  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38: 254–269

    Article  CAS  Google Scholar 

  • Siegler DS (1979) Toxic seed lipids. In: Rosenthal GA, Janzen DH (eds) Herbivores — their interaction with secondary plant metabolites. Academic Press, New York, pp 449–470

    Google Scholar 

  • Steffens JC (1990) Heavy metal stress and the phytochelatin response. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 377–394

    Google Scholar 

  • Streuver S (1971) Prehistoric agriculture. Natural History Press, Garden City, New York

    Google Scholar 

  • Tal M (1985) Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant Soil 89: 199–226

    Article  Google Scholar 

  • Verkleij JAC, Bast-Cramer WB, Levering H (1985) Effects of heavy metal stress on the genetic structure of populations of Silene cucubalus. In: Haeck J, Woldendorp JW (eds) Structure and functioning of plant populations. North-Holland, Amsterdam, pp 355–365

    Google Scholar 

  • Villareal RL, Varughese G, Abdalla OS (1990) Advances in spring triticale breeding. Plant Breed Rev 8: 43–90

    Google Scholar 

  • Watson MC (1990)Atriplex species as irrigated forage crops. Agric Ecosyst Environ 32: 107–118

    Google Scholar 

  • Watson MC, O’Leary JW (1993) Performance ofAtriplex species under irrigated conditions and mechanical harvests. Agric Ecosyst Environ 43: 255–266

    Article  Google Scholar 

  • Watson MC, O’Leary JW, Glenn EP (1987) Evaluation of Atriplex lentiformis (Torr.) S. Wats, and Atriplex nummularia Lindl. as irrigated forage crops. J Arid Environ 13: 293–303

    Google Scholar 

  • Wickland DE (1990) Vegetation of heavy metal-contaminated soils in North America. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 39–51

    Google Scholar 

  • Wilson JB (1988) The cost of heavy-metal tolerance: an example. Evolution 42: 408–413

    Article  Google Scholar 

  • Yensen NP, Bojorquez de Yensen S (1987) Development of a rare halophyte grain: prospects for reclamation of salt-ruined lands. J Wash Acad Sci 77: 209–214

    Google Scholar 

  • Yensen SB, Weber CW (1986) Composition ofDistichlis palmeri grain, a saltgrass. J Food Sci 51: 1089–1090

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Leary, J.W. (1994). The Agricultural Use of Native Plants on Problem Soils. In: Yeo, A.R., Flowers, T.J. (eds) Soil Mineral Stresses. Monographs on Theoretical and Applied Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84289-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84289-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84291-7

  • Online ISBN: 978-3-642-84289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics