Advertisement

Generation And Properties Of Income Distribution Functions

  • Camilo Dagum
Part of the Studies in Contemporary Economics book series (CONTEMPORARY)

Abstract

The issues of income and wealth distributions and their associated concepts of economic inequality and social welfare recognizes a long and enlightened tradition to which the Code of Hammurabi, the contributions of Aristotle, St. Thomas Aquinas, J.J. Rousseau and several XlXth Century socialists philosophers and economists belong.

Keywords

Income Distribution Income Elasticity Wealth Distribution Probability Generate Function Infinite Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allais, M. (1977). L’impot sur le Capital, Paris: Herman, 2nd. edition, 1988.Google Scholar
  2. Amoroso, L. (1925). Ricerche Intorno alia Curva dei Redditi. Annali di Matematica Pura ed Applicata, Serie 4–21, II, pp. 123–157.Google Scholar
  3. Bartels, C.P.A. (1977). Economic Aspects of Regional Welfare, Leiden, Martinus Nijhoff.CrossRefGoogle Scholar
  4. Bartels, C.P.A. and Vries, O.M. (1977). Succint Analytical Descriptions of Income Distributions Using Transformation Functions. Economic Appliquee, XXX, 3, pp. 369–390.Google Scholar
  5. Basmann, R.L. and Rhodes, G.F. eds. (1985). Advances in Econometrics, Vol. 4: Economic Inequality: Survey, Methods and Measurements, Greenwich, Connecticut, JAI Press.Google Scholar
  6. Benini, R. (1906), Principii di Statistica Metodologica, Torino, UTET.Google Scholar
  7. Bernouilli, D. (1738). Exposition of a New Theory of the Measurement of Risk. English translation in Econometrica, XXII (1), 1954, pp. 23–26.Google Scholar
  8. Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformation. Journal of the Royal Statistical Society, Serie B, 2, pp. 211–243.Google Scholar
  9. Bresciani-Turroni, C. (1910). Di un Indice Misuratore della Disuguaglianza nella Distribuzione della Ricchezza. In Studi in Onore di Biagio Brugi, Palermo, L. Campa, pp. 794–812.Google Scholar
  10. Bresciani-Turroni, C. (1939). Pareto’s Law and the Index of Inequality of Income. Econometrica, VII (2), pp. 107–133.CrossRefGoogle Scholar
  11. Budd, E.C. (1970). Distribution Issues: Trends and Policies. Postwar Changes in the Size Distribution of Income in the U.S.. American Economic Review, 60, 2, pp. 247–260.Google Scholar
  12. Cantelli, F.P. (1921). Sulla Deduzione delle Leggi di Frequenza da Considerazioni di Probabilita’. Metron, I (3), pp. 83 - 91.Google Scholar
  13. Champernowne, D.G. (1952). The Graduation of Income Distributions. Econometrica, 20, 4, pp. 591–615.CrossRefGoogle Scholar
  14. Champernowne, D.G. (1953). A Model of Income Distribution. Economic Journal, 53, 2, pp. 318–351.CrossRefGoogle Scholar
  15. Cramèr, H. (1946). Mathematical Methods of Statistics, Princeton: Princeton University Press. D’Addario, R. (1949). Ricerche sulla Curva dei Redditi. Giornale degli Economisti e Annali di Economia, 8, pp. 91–114.Google Scholar
  16. Dagum, C. (1977). A New Model of Personal Income Distribution: Specification and Estimation. Economie Appliquee, XXX, 3, pp. 413–436.Google Scholar
  17. Dagum, C. (1980a). Sistemas Generadores de Distribucion del Ingreso y la Ley de Pareto. El Trimestre Economico, XLVII (4), n. 188, pp. 877–917.Google Scholar
  18. Dagum, C. (1980b). The Generation and Distribution of Income, the Lorenz Curve and the Gini Ratio. Economie Appliquee, XXIII (2), pp. 327–367.Google Scholar
  19. Dagum, C. (1980c). Generating Systems and Properties of Income Distribution Models. Metron, XXVIII (4), pp. 3–26.Google Scholar
  20. Dagum, C. (1983). Income Distribution Models. Encyclopedia of Statistical Sciences, IV, S. Kotz and N.L. Johnson, Editors-in- Chief, New York: John Wiley and Sons, pp. 27–34.Google Scholar
  21. Dagum, C. (1985). Analyses of Income Distribution and Inequality by Education and Sex in Canada. In Advances in Econometrics, Vol. IV, R.L. Basmann and G.F. Rhodes, Jr., editors, Greenwich, CN: JAI Press, 1985, pp. 167–227.Google Scholar
  22. Dagum, C. (1986). Economic Model, System and Structure, Philosophy of Science and Lakatos’ Methodology of Scientific Research Program. Rivista Intemazionale di Science Economiche e Commerciali, XXXIII, pp. 859–886.Google Scholar
  23. Dagum, C. (1989). A Model of Wealth Distribution Specified for Negative, Null and Positive Wealth. Proceedings of the International Meeting of Income and Wealth, University of Pavia, in this volume.Google Scholar
  24. Dagum, C. and Lemmi, A. (1989). A Contribution to the Analysis of Income Distribution and Income Inequality, and a Case Study: Italy. In Research on Economic Inequality, D.J. Slottje, ed., Greenwich, CN: JAI Press, pp. 123–157.Google Scholar
  25. Dalton, H. (1920). The Measurement of Inequality of Incomes. Economic Journal, 30, pp. 348–361.CrossRefGoogle Scholar
  26. Davis, H.T. (1941). The Analysis of Economic Time Series, Bloomington (Indiana): The Principia Press.Google Scholar
  27. Edgeworth, F.Y. (1898). On the Representation of Statistics by Mathematical Formulae. Journal of the Royal Statistical Society, 1, pp. 670–700.Google Scholar
  28. Elderton, W.P. and Johnson, N.L. (1969). Systems of Frequency Curves, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Fattorini, L. and Lemmi, A. (1979). Proposta di un Modello Alternativo per l’Analisi della Distribuzione Personale del Reddito. Atti delle Giomate di Lavoro AIRO (Associazione Italiana di Ricerca Operativa),Bologna, pp. 89–117.Google Scholar
  30. Fisk, P.R. (1961). The Graduation of Income Distribution. Econometrica, 29 (2), pp. 171–185.CrossRefGoogle Scholar
  31. Frèchet, M. (1939). Sur les Formules de Repartition des Revenus. Revue de l’Institut International de Statistique, Vol. 7 (1), pp. 32–38.CrossRefGoogle Scholar
  32. Gibrat, R. (1931). Les inegalites economiques, Paris: Sirey.Google Scholar
  33. Gini, C. (1909). II Diverso Accrescimento delle Classi Sociali e la Concentrazione della Ricchezza. Giornale degli Economisti, Serie II, Vol. XXX VII.Google Scholar
  34. Gini, C. (1910). Indici di concentrazione e di dependenza. Atti della III Riunione della Societa’ Italiana per il Progresso delle Scienze, in C. Gini (1955), pp. 3–120.Google Scholar
  35. Gini, C. (1912a). I Fattori Demografici dell’Evoluzione delle Nazioni, Torino, Bocca.Google Scholar
  36. Gini, C. (1912b). Variabilita’ e Mutabilita’. Studi Economico- giuridico, Universita’ di Cagliari, III (2a), 1912, in C. Gini (1955), pp. 211–382.Google Scholar
  37. Gini, C. (1914). Sulla Misura della Concentrazione e della Variabilita’ dei Caratteri. Atti del R. Istituto Veneto di Scienze, Lettere ed Arti, in C. Gini (1955), pp. 411–459.Google Scholar
  38. Gini, C. (1930a)., Nascita, Evoluzione e Morte delle Nazioni, Roma, Libreria del Littorio.Google Scholar
  39. Gini, C. (1930b). The Future of Human Populations. The American Journal of Sociology, XXXVI (2).Google Scholar
  40. Gini, C. (1932). Intorno alle Curve di Concentrazione. Metron, IX, 3–4, in C. Gini (1955), pp. 651–724.Google Scholar
  41. Gini, C. (1952). Patologia Economica, Torino, UTET, Fifth edition.Google Scholar
  42. Gini, C. (1955). Memorie di Metodologia Statistica, Vol. I: Variabilita’ e Concentrazione, Edizione aggiornata a cura di E. Pizetti e T. Salvemini, Roma, Libreria Eredi Virgilio Veschi.Google Scholar
  43. Johnson, N.L. (1949). Systems of Frequency Curves Generated by Methods of Translation. Biometrika, 44, pp. 147–176.Google Scholar
  44. Kalecki, M. (1945). On the Gibrat Distribution. Econometrica, 13, pp. 161–170.CrossRefGoogle Scholar
  45. Kloek, T. and van Dijk, N.K. (1977). Further Results on Efficient Estimation of Income Distribution Parameters. Economic Appliquee, XXX (3), pp. 439–459.Google Scholar
  46. Kloek, T. and van Dijk, N.K. (1978). Efficient Estimation of Income Distribution Parameters. Journal of Econometrics, 8, pp. 61–74.CrossRefGoogle Scholar
  47. Lévy, P. (1925). Calculs des Probabilites, Paris, Gauthier-Villars.Google Scholar
  48. Lydall, H. (1968). The Structure of Earnings, Oxford, Oxford University Press.Google Scholar
  49. Macaulay, F.R. (1922). The Personal Distribution of Income in the United States. In W.C. Mitchell, ed. (1922), 341–394.Google Scholar
  50. Mandelbrot, B. (1960). The Pareto-Lévy Law and the Distribution of Income. International Economic Review, 1, pp. 79–106.CrossRefGoogle Scholar
  51. Mandelbrot, B. (1963). New Methods in Statistical Economics. Journal of Political Economy, LXXI, 5, pp. 421–440.CrossRefGoogle Scholar
  52. March, L. (1898). Quelques Exemples de Distribution de Salaires. Journal de la Societe Statistique de Paris, pp. 193–206 and 241–248.Google Scholar
  53. McDonald, J.B. (1984). Some Generalized Functions for the Size Distribution of Income. Econometrica, 52, 3, pp. 647–663.CrossRefGoogle Scholar
  54. McDonald, J. and Ransom, M.R. (1979). Functional Forms, Estimation Techniques and the Distribution of Income. Econometrica, 47 (6), pp. 1513–1525.CrossRefGoogle Scholar
  55. Metcalf, E. Ch. (1972). An Econometric Model of the Income Distribution, Chicago, Markham Publishing Company.Google Scholar
  56. Mitchell, W.C., ed. (1922). Income in the United States: Its Amount and Distribution, 1909–1919, New York, National Bureau of Economic Research.Google Scholar
  57. Ord, J.K. (1975). Statistical Models for Personal Income Distributions. In G.P. Patil, S. Kotz and J.K. Ord, editors.Google Scholar
  58. Pareto, V. (1895). La legge della domanda. Giornale degli Economisti, Gennaio 1895, pp. 59–68.Google Scholar
  59. Pareto, V. (1896). Ecrits sur la Courbe de la Repartition de la Richesse, Oeuvre Completes de Vilfredo Pareto publiees sous la direction de Giovanni Busino, Geneve, Librairie Droz.Google Scholar
  60. Pareto, V. (1897). Cours d’Economie Politique, New Edition by G.H. Bousquet et G. Busino (1964), Geneve, Librairie Droz.Google Scholar
  61. Patil, G.P.-Kotz, S. and Ord, J.K. editors (1975). Statistical Distributions in Scientific Work, Vol. 2, Dordrecht, D. Reidel.Google Scholar
  62. Pearson, K. (1894). Contributions to the Mathematical Theory of Evolution. Philosophical Transactions of the Royal Society, Vol. 184, in K. Pearson (1948), pp. 1–40.Google Scholar
  63. Pearson, K. (1895). Contributions to the Mathematical Theory of Evolution II: Skew-Variation in Homogeneous Material. Philosophical Transactions of the Royal Society, No. 186, in K. Pearson (1948), pp. 41–112.Google Scholar
  64. Pearson, K. (1948). Karl Pearson’s Early Statistical Papers, Cambridge, Cambridge University Press.Google Scholar
  65. Pietra, G. (1948). Studi di Statistica Metodologica, Milano, Giuffré.Google Scholar
  66. Rutherford, R.S.G. (1955) Income Distributions: A New Model. Econometrica, 23, 3, pp. 277–294.CrossRefGoogle Scholar
  67. Salem, A.B.Z. and Mount, T.D. (1974). A Convenient Descriptive Model of Income Distribution. Econometrica, 42 (6), pp. 1115–1127.CrossRefGoogle Scholar
  68. Sen, A.K. (1973). On Economic Inequality, Oxford, Oxford University Press.CrossRefGoogle Scholar
  69. Sen, A.K. (1982). Choice, Welfare and Measurement, Oxford, Basil Blackwell.Google Scholar
  70. Singh, S.K. and Maddala, G.S. (1976). A Function for Size Distribution of Income. Econometrica, 44 (5), pp. 963–970.CrossRefGoogle Scholar
  71. Thurow, L.C. (1970). Analyzing the American Income Distribution. American Economic Review, 48, pp. 261–269.Google Scholar
  72. Vinci, F. (1921). Nuovi Contributi alio Studio della Distribuzione dei Redditi. Giornale degli Economisti e Rivista di Statistica, 61, pp. 365–369.Google Scholar
  73. Weibull, W. (1951). A statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, pp. 293–297.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Camilo Dagum
    • 1
  1. 1.University of OttawaCanada

Personalised recommendations