Skip to main content

Development of Yield Strip Models Using the Surface Integral and Finite Element Hybrid Method

  • Conference paper
  • 506 Accesses

Summary

The further development of the Surface Integral and Finite Element Hybrid method for modelling yielding of the material at a crack tip is presented in this paper. The crack in an infinite domain is modelled using a dislocation based integral equation formulation. The uncracked finite body is modelled using finite elements and these two models are coupled using linear superposition for solving the problem of a crack in a finite domain. The yield strips are lumped models that can model small-scale plastic yielding and are useful for both plane stress and plane strain situations. Results obtained using the hybrid formulation are in good agreement with those obtained using the classical Dugdale-Barenblatt and Bilby-Cottrell-Swinden models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolfe, S.T.; Barsom J.M.: Fatigue and Fracture Control of Structures, Prentice Hall, 1977.

    Google Scholar 

  2. Kanninen, M.F.; Popelar, C.H.: Advanced Fracture Mechanics, Oxford University Press, 1985.

    Google Scholar 

  3. Hult, J.A.H.; McClintock, F.A.: Elastic-plastic stress and strain distributions around sharp notches under repeated shear, Proceedings of the 9th International Congress for Applied Mechanics, Vol.8, University of Brussels, 51-58, 1957.

    Google Scholar 

  4. Dugdale, D.S.: Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, Vol. 8, 100–108, 1960.

    Article  ADS  Google Scholar 

  5. Barenblatt, G.I.: The mathematical theory of equilibrium of a crack in brittle fracture, Advances in Applied Mechanics, Vol.7, 55–129, 1962.

    Article  MathSciNet  Google Scholar 

  6. Bilby, B.A.; Cottrell, A.H.; Swinden, K.H.: The spread of plastic yield from a notch, Proceedings of the Royal Society, Vol. A285, 22–33, 1965.

    Google Scholar 

  7. Rice, J.R.: Mathematical Analysis in the Mechanics of Fracture, Chapter 3 of Fracture: An Advanced Treatise, Leibowitz H.(ed.), Vol. 2., 191–311, Academic Press, New York, 1968.

    Google Scholar 

  8. Hutchinson, J.W.: Singular behavior at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, Vol. 16, 13–31, 1968.

    Article  MATH  ADS  Google Scholar 

  9. Annigeri, B.S.: Surface Integral Finite Element Hybrid Method For Localized Problems in Continuum Mechanics, Sc.D. Thesis, Department of Mechanical Engineering, M.I.T., 1984.

    Google Scholar 

  10. Annigeri, B.S.; Cleary M.P.: Surface integral finite element hybrid (SIFEH) method for fracture mechanics. International Journal for Numerical Methods in Engineering, Vol.20, 869–885, 1984.

    Article  MATH  Google Scholar 

  11. Annigeri, B.S.; Cleary M.P.: Quasi-static fracture propagation using the surface integral finite element hybrid method. ASME PVP Vol.85, 1984.

    Google Scholar 

  12. Annigeri, B.S.: Effective modelling of stationary and propagating cracks using the surface integral and finite element hybrid method. ASME AMD Vol.72, 1985.

    Google Scholar 

  13. Annigeri, B.S.: Thermoelastic fracture analysis using the surface integral and finite element hybrid method. Presented at the ICES-88 Conference, Atlanta, Georgia, 1988.

    Google Scholar 

  14. Suresh S.; Ritchie R.O.: Propagation of short fatigue cracks. International Metal Reviews, Vol. 29, No. 6, 445–476, 1983.

    Google Scholar 

  15. Carnahan, B.; Luther, H.A.; Wilkes J.O.: Applied Numerical Methods, John Wiley, New York, 1969.

    MATH  Google Scholar 

  16. Keat, W.D.; Annigeri B.S.; Cleary, M.P.: Surface integral and finite element hybrid method for two and three dimensional fracture mechanics analysis. International Journal of Fracture, Vol.36, 35–53, 1988.

    Google Scholar 

  17. Budiansky B.; Hutchinson J.W.: Analysis of closure in fatigue crack growth. Journal of Applied Mechanics, Vol.45, 267–276, 1978.

    Article  MATH  ADS  Google Scholar 

  18. Vitek, V.: Yielding on inclined planes at the tip of a crack loaded in uniform tension, Journal of the Mechanics and Physics of Solids, Vol. 24, 263–275, 1976.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Annigeri, B.S. (1990). Development of Yield Strip Models Using the Surface Integral and Finite Element Hybrid Method. In: Annigeri, B.S., Tseng, K. (eds) Boundary Element Methods in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84238-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84238-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84240-5

  • Online ISBN: 978-3-642-84238-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics