Chemical Reaction Rate Effects in Turbulent Non-premixed Combustion

  • H. Bockhorn
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 48)


A turbulent combustion model without simplifying assumptions about the chemical reactions is evaluated by means of a sensitivity analysis. The turbulence model is conventional and based on gradient transport assumptions and an eddy viscosity concept. In addition to the equations of the turbulent flow field the species conservation equations are solved. The chemical reactions are described by a detailed, elementary kinetics reaction mechanism. The source terms in the species conservation equations are treated by means of a presumed-shapepdf-closure relaxing the assumption of statistically independent variables. The sensitivity analysis for the turbulent combustion model is performed in terms of the local first order sensitivity coefficients. The sensitivity analysis demonstrates the limitations of the turbulence model and the relative importance of single elementary steps of the reaction mechanism. From this, some arguments for the simplification of the closure for the mean chemical reaction rates are derived.


Rate Coefficient Diffusion Flame Sensitivity Coefficient Combustion Model Scalar Dissipation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilger, R.W.: Turbulent Flows with Nonpremixed Reactants.In: Turbulent Reacting Flows, P.A. Libby and F.A. Williams (eds.), p.65. Springer-Verlag, Berlin, Heidelberg 1980.CrossRefGoogle Scholar
  2. 2.
    Williams, F.A.: Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, (S.N.B. Murthy, Ed.), p. 189, Plenum Press, New York,1975.CrossRefGoogle Scholar
  3. 3.
    Peters, N.: Local Quenching due to Flame Stretch and Non-Premixed Combustion. Combust. Sci. Tech. 30, 1 (1983).CrossRefGoogle Scholar
  4. 4.
    Liew, S.K., Bray, K.N.C. and Moss J.B.: A Stretched Laminar Flamelet Model of Turbulent Nonpremixed Combustion. Combust. Flame 56, 199 (1984).CrossRefGoogle Scholar
  5. 5.
    Peters, N.: Laminar Diffusion Flamelet Models in Nonpremixed Combustion. Prog. Energy Combust. Sci. 10, 319 (1984).CrossRefGoogle Scholar
  6. 6.
    Libby, P.A. and Williams, F.A.: Fundamental Aspects. In: Turbulent Reacting Flows, P.A. Libby and F.A. Williams (eds.), p.1. Springer-Verlag, Berlin, Heidelberg 1980.CrossRefGoogle Scholar
  7. 7.
    Behrendt, F., Bockhorn, H., Rogg, B. and Warnatz, J.: Modeling of Turbulent CO/Air Diffusion Flames with Detailed Chemistry. In: Complex Chemical Reaction Systems, Mathematical Modelling and Simulation, J. Warnatz and W. Jäger (eds.), p. 376. Springer-Verlag, Berlin, Heidelberg 1987.CrossRefGoogle Scholar
  8. 8.
    Spalding, D.B.: Basic Equations of Fluid Mechanics and Heat and Mass Transfer. Imperial College London, Mechanical Engineering Department, Report HTS /76/6, London 1976.Google Scholar
  9. 9.
    Patankar, S.V.: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, London 1965.Google Scholar
  10. 10.
    Bockhorn, H.: Modeling of Turbulent Diffusion Flames with Detailed Chemistry. In: Mathematical Modeling in Combustion and Related Topics, C.-M. Brauner and C. Schmidt-Laine (eds.), p.411. Martinus Nijhoff Publishers, Dordrecht 1988.CrossRefGoogle Scholar
  11. 11.
    Bockhorn, H.: Local Equilibrium and Finite Chemical Reaction Rate Effects in Turbulent H2-Air Diffusion Flames. Twenty-Second Symposium (International) on Combustion, p. 665, The Combustion Institute, Pittsburgh, Pa., 1988.Google Scholar
  12. 12.
    Bockhorn, H.: Zur Struktur Turbulenter Flammen. Habilitationsschrift, T.H. Darmstadt, Darmstadt 1989.Google Scholar
  13. 13.
    Gosman, A.D., Pun, W.M., Runchal, A.K., Spalding, D.B. and Wolfshtein, M.: Heat and Mass Transfer in Recirculating Flows. Academic Press, London 1969.Google Scholar
  14. 14.
    Srivatsa, S.K.: Cora2 — A Computer Code for Axi-symmetrical Combustion Chambers. CHAM, Technical Report, TR201/1, London 1977.Google Scholar
  15. 15.
    Bockhorn, H. and Lutz, G.: The Application of Turbulent Reaction Models to the Oxidation of CO in a Turbulent Flow. Twentieth Symposium (International) on Combustion, p. 377. The Combustion Institute, Pittsburgh, Pa. 1984.Google Scholar
  16. 16.
    Bockhorn, H. and Lutz, G.: Reaction Models for Simulation of the Oxidation of Carbon Monoxide in Turbulent Diffusion Flames. Chem. Eng. Technol. 10, 43 (1987).CrossRefGoogle Scholar
  17. 17.
    Warnatz, J.: Rate Coefficients in the C/H/O System. In: Combustion Chemistry, W.C. Gardiner, Jr. (ed.), p. 196. Springer — Verlag, New York 1984.Google Scholar
  18. 18.
    Maas, U. and Warnatz, J.: Mathematische Modellierung von Selbstzündung und Zündgrenzen im H 2O 2CO — System. VDI Berichte Nr. 645, p. 509. VDI — Verlag, Düsseldorf 1987.Google Scholar
  19. 19.
    Drake, M.C., Bilger, R.W. and Starner, S.H.: Raman Measurements and Conserved Scalar Modeling in Turbulent Diffusion Flames. Nineteenth Symposium (International) on Combustion, p. 459. The Combustion Institute, Pittsburgh, Pa. 1982.Google Scholar
  20. 20.
    Drake, M.C.: Stretched Laminar Flamelet Analysis of Turbulent H2 and CO/H2/N2 Diffusion Flames. Twenty — First Symposium (International) on Combustion, p. 1579. The Combustion Institute, Pittsburgh, Pa. 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • H. Bockhorn
    • 1
  1. 1.Institut für Chemische TechnologieTechnische Hochschule DarmstadtDarmstadtFed. Rep. of Germany

Personalised recommendations