Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 48))

Abstract

Turbulent flame propagation is modeled as a passive front moving through a multiple-scale flow field, in which large-scale eddies convect small-scale eddies without causing their distortion. For moderately high levels of turbulence the effective flame speed predicted by the theory correlates reasonably well with the experimental data available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerstein, A., Ashurst, Wm. T., and Williams, F.A., Phys. Rev. A37, 2728 (1988).

    Article  ADS  Google Scholar 

  2. Yakhot, V. Combust. Sci. and Tech. 60, 191 (1988).

    Article  MathSciNet  Google Scholar 

  3. Sivashinsky, G.I., Combust. Sci. and Tech. 62, 77 (1988).

    Article  Google Scholar 

  4. Wilson, K.G., Phys. Rev. B4, 3174 (1971).

    Article  ADS  Google Scholar 

  5. Rose, H.A., J. Fluid Mech. 81, 719 (1977).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Moffatt, M.K., J. Fluid Mech. 106, 27 (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Zeldovich, Ya. B., Soviet Physics, Doklady 27 (10), 797 (1982).

    ADS  Google Scholar 

  8. Yakhot, V., and Orszag, S.A., J. Sci. Comp. 1 (1), 3 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  9. Clavin, P., and Williams, F.A., J. Fluid Mech. 90, 589 (1979).

    Article  ADS  MATH  Google Scholar 

  10. Gouldin, F.C. Combust. Flame, 68, 249 (1987).

    Article  Google Scholar 

  11. Peters, N. 21st Symp. (Int.) on Combustion, The Combustion Institute, 1231 (1988).

    Google Scholar 

  12. Kerstein, A. Combust. Sci. and Tech., 60, 441 (1988).

    Article  Google Scholar 

  13. Abdel-Gayed, R.G., Al-Khishali, K.J., and Bradley, D., Proc. Royal Soc. London, A391, 393 (1984).

    Article  ADS  Google Scholar 

  14. Sokolik, A.S., Karpov, W.P., and Semenov, E.S. Combust. Exp. Shock Waves, 3, 61 (1967).

    Google Scholar 

  15. Chomiak, J., and Jarosinsky, J. Combust. Flame, 48, 241 (1982).

    Article  Google Scholar 

  16. Abdel-Gayed, R.G., and Bradley, D. Combust. Flame, 62, 61 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Sivashinsky, G.I. (1990). Cascade Model for Turbulent Flame Propagation. In: Meinköhn, D. (eds) Dissipative Structures in Transport Processes and Combustion. Springer Series in Synergetics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84230-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84230-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84232-0

  • Online ISBN: 978-3-642-84230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics