Skip to main content

The Complex Dynamics of Wrinkled Flames

  • Conference paper
  • 133 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 48))

Abstract

We summarize recent analytical attempts to understand the dynamics of hydrodynamically unstable, hence wrinkled, premixed flames. Exact solutions to qualitatively correct, non-linear evolution equations are displayed, and used as a basis to study the role of large scale geometry in the local flame dynamics. The flame response to external hydrodynamic noise also is evoked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Williams (1985), “Combustion theory”, 2nd Edition, Benjamin-Cummings, Menlo Park.

    Google Scholar 

  2. P. Clavin (1985), “Dynamic behavior of premixed flames in laminar and turbulent flow”, Prog. En. Comb. Sci., 11, 1–59.

    Article  Google Scholar 

  3. Ya.B. Zel’Dovitch, G.I. Barenblatt, V.B. Librovitch, G.M. Markhviladze (1985), “The mathematical theory of combustion and explosions”, Consultant Bureau, New York.

    Book  Google Scholar 

  4. L.D. Landau (1944), “On the theory of slow combustion”, Acta Physicochim. USSR, 19, 77.

    Google Scholar 

  5. G. Darrieus (1938), “Propagation d’un front de flamme; essai de théorie de vitesses anormales de déflagration par développement spontané de la turbulence”, unpublished work presented at “La Technique Moderne”, Paris.

    Google Scholar 

  6. G.S.S. Ludford, J. Buckmaster (1982), “Theory of laminar flames”, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  7. P. Clavin, G. Joulin (1983), “Premixed flames in high-intensity, large-scale turbulent flows”, J. de Physique-Lettres (France), 1, 1–12.

    Article  Google Scholar 

  8. P. Cambray, B. Deshaies, G. Joulin (1987), “Gaseous premixed flames in nonuniform flows”, AGARD PEP Conference no 422, 36.1–36.6.

    Google Scholar 

  9. G.H. Markstein (1965), “Non-steady flame propagation”, Pergamon Press, New York.

    Google Scholar 

  10. G.I. Sivashinsky (1977), “Nonlinear analysis of hydrodynamic instability in laminar flames; Part I”. Acta Astron., 4, 1177–1206.

    Article  MATH  MathSciNet  Google Scholar 

  11. D.M. Michelson, G.I. Sivashinsky (1977), “Nonlinear analysis of hydrodynamic instability in laminar flames; Part II”. Acta Astron., 4, 1207–1221.

    Article  MATH  MathSciNet  Google Scholar 

  12. G.I. Sivashinsky (1983), “Instabilities, pattern formation and turbulence in flames”, Ann. Rev. Fluid. Mech., 15, 179–199.

    Article  ADS  Google Scholar 

  13. G.I. Sivashinsky, P. Clavin (1987), “On the nonlinear theory of hydrodynamic instability in flames”, J. Physique (France), 48, 193–198.

    Article  Google Scholar 

  14. O. Thual, M. Henon, U. Frisch (1985), “Application of pole decomposition to an equation governing the dynamics of wrinkled flames”, J. Physique (France), 46, 1485–1494.

    Article  Google Scholar 

  15. M. Renardy (1987), “A model equation in combustion theory exhibiting an infinite number of secondary bifurcations”, Physica D, 28, 155–167.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. G. Joulin (1987), “On the hydrodynamic stability of flat-burner flames”, Comb. Sci. and Techn., 53, 315–338.

    Article  Google Scholar 

  17. G. Joulin (1989), “On the hydrodynamic stability of curved flames”, J. Physique (France), 50, 1069–1082.

    Article  MathSciNet  Google Scholar 

  18. Ya. B. Zel’Dovitch, D. Istratov, A.G. Kidin, V.B. Librovitch (1980), “Flame propagation in tubes: hydrodynamics and stability”, Comb. Sci. and Techn., 24, 1–13.

    Article  Google Scholar 

  19. P. Pelce (1989), “Dynamics of curved fronts”, Academic Press, New York.

    Google Scholar 

  20. D.M. Michelson, G.I. Sivashinsky (1983), “Thermal — expansion — induced cellular flames”, Comb. and Flame, 48, 41–47.

    Google Scholar 

  21. G. Joulin (1989), “On the nonlinear theory of hydrodynamic instabilities of expanding flames”, submitted.

    Google Scholar 

  22. A. Palm-Leis, R.A. Strehlow (1969), “On the propagation of turbulent flames”, Comb. and Flame, 13, 111–129.

    Article  Google Scholar 

  23. G. Joulin (1988), “On a model for the response of unstable flames to turbulence”, Comb. Sci. and Techn., 53, 1–6.

    Article  Google Scholar 

  24. B. Denet (1988) “Simulation numérique d’instabilités de front de flamme”, Thèse, Université de Marseille.

    Google Scholar 

  25. I.S. Gradshteyn, I.M. Ryzhik “Tables of integrals, series and products”, Academic Press, N.Y.

    Google Scholar 

  26. H. Chate (1989) “A minimal model for turbulent flame fronts”, in “Mathematical Modelling in Combustion and related topics”, NATO AS I Series, E140, 441-448, Brauner & Schmidt-Laine Eds., M. Nijhoff Pub., Dordrecht.

    Google Scholar 

  27. Y.C. Lee, H.H. Chen (1982) “Non-linear dynamical models of plasma turbulence”, Phys. Scri., T.2, 41–47.

    Article  ADS  MathSciNet  Google Scholar 

  28. Sherlock Holmes; quoted in: C.M. Bender, S.A. Orszag (1984) “Advanced mathematical methods for scientists and engineers”, 61, McGraw Hill Intern. Book Company, Auckland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Joulin, G. (1990). The Complex Dynamics of Wrinkled Flames. In: Meinköhn, D. (eds) Dissipative Structures in Transport Processes and Combustion. Springer Series in Synergetics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84230-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84230-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84232-0

  • Online ISBN: 978-3-642-84230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics