Skip to main content

Interactions Between Convective and Diffusive Components of O2 Transport to the Tissues

  • Chapter
Pulmonary Function in Mechanically Ventilated Patients

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 13))

  • 209 Accesses

Abstract

The metabolism of the human beings is essentially aerobic. This means that the energy necessary to support the different biological functions of the organism depends ultimately on the adequate utilization of atmospheric O2 in the mitochondrial respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weibel ER (1984) The pathway for oxygen. Structure and function in the mammalian respiratory system. Harvard University Press, London

    Google Scholar 

  2. Wagner PD (1988) An integrated view of the determinants of maximum oxygen uptake. In: Gonzalez NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues (Advances in experimental medicine and biology, vol 227) Plenum Press, New York, pp 245–256

    Google Scholar 

  3. Hogan MC, Roca J, West JB, Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius “in situ”. J Appl Physiol 66 (3): 1919–1226

    Google Scholar 

  4. Hogan MC, Roca J, Wagner PD, West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in “in situ” dog muscle. J Appl Physiol 65 (2): 815–821

    PubMed  CAS  Google Scholar 

  5. Roca J, Hogan MC, Story D, et al. (1989) Evidence of tissue diffusion limitation of VO2max in normal man. J Appl Physiol 67 (1): 291–299

    PubMed  CAS  Google Scholar 

  6. Kaijser L (1970) Limiting factors for aerobic muscle performance. The influence of varying oxygen pressure and temperature. Acta Physiol Scand (Suppl) 3246: 1–96

    Google Scholar 

  7. Jobsis FF, Stainsby WN (1986) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 45: 2937–2941

    Google Scholar 

  8. Rowell LB, Saltin B, Kiens B, Christensen NJ (1986) Is peak quadriceps flow in humans even higher during exercise with hypoxemia? Am J Physiol (Heart Circ Physiol) 256 (20): H1038–H1044

    Google Scholar 

  9. Gledhill N (1982) Blood doping and related issues: a brief review. Med Sei Sports Exercise 14(3): 183–189

    CAS  Google Scholar 

  10. Welch HG (1982) Hyperoxia and human performance: a brief review. Med Sci Sports Exercise 14 (4): 253–262

    Article  CAS  Google Scholar 

  11. Pirnay F, Lamy M, Dujardin J, Deroanne R, Petit JM (1972) Analysis of femoral venous blood during maximum exercise. J Appl Physiol 33 (3): 289–292

    PubMed  CAS  Google Scholar 

  12. Horstman DH, Gleser M, Delehunt J (1976) Effects of altering O2 delivery on VO2 of isolated, in situ working muscle. Am J Physiol 230: 327–334

    PubMed  CAS  Google Scholar 

  13. Saltin B (1985) Hemodynamic adaptations to exercise. Am J Cardiol 55: 42D–47D

    Article  PubMed  CAS  Google Scholar 

  14. Piiper J, Scheid P (1975) Gas transport efficacy of gills, lungs and skin: theory and experimental data. Resp Physiol 23: 209–221

    Article  CAS  Google Scholar 

  15. Wagner PD (1987) Peripheral inert-gas exchange. In: Fishman AP (ed) Handbook of physiology. The respiratory system, vol. IV. American Physiological Society, Bethesda, MD

    Google Scholar 

  16. Bohr C (1909) Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Scand Arch Physiol 22: 221–280

    Google Scholar 

  17. Wagner PD (1977) Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev 57 (2): 257–312

    PubMed  CAS  Google Scholar 

  18. Honig CR, Gayeski TEJ, Federspiel W, Clark A Jr, Clark P (1984) Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol 169: 23–38

    PubMed  CAS  Google Scholar 

  19. Gayeski TEJ, Honig CR (1988) Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol (Heart Circ Physiol) 254: H1179–H1186

    CAS  Google Scholar 

  20. Krogh A (1919). The number and distribution of capillaries in muscle with calculations of the pressure head necessary for supplying the tissue. J Physiol (London) 52: 409–415

    CAS  Google Scholar 

  21. Danek SJ, Lynch JP, Weg JG, Danztker DR (1980) The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 122: 387–395

    PubMed  CAS  Google Scholar 

  22. Mohsenifar Z, Jasper AC, Mickle E, Koerner SK (1988) Relationship between oxygen uptake and oxygen delivery in pulmonary hypertension. Am Rev Respir Dis 138: 69–73

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami Y, Kishi F, Yamamoto H, Miyamoto K (1983) Relationships of oxygenation and pulmonary hemodynamics to prognosis in chronic obstructive pulmonary disease. N Engl J Med 134: 1135–1139

    Google Scholar 

  24. Gutierrez G, Pohil RJ, Strong R (1988) Effect of flow on O2 consumption during progressive hypoxemia. J Appl Physiol 65: 601–607

    PubMed  CAS  Google Scholar 

  25. Grisham MB, McCord JM (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor A, Matalon S, Ward P (eds) Physiology of oxygen radicals. Clinical physiology series. American Physiological Society, Bethesda, MD, pp 1–18

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roca, J., Hogan, M., Wagner, P.D. (1991). Interactions Between Convective and Diffusive Components of O2 Transport to the Tissues. In: Benito, S., Net, A. (eds) Pulmonary Function in Mechanically Ventilated Patients. Update in Intensive Care and Emergency Medicine, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84209-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84209-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52650-6

  • Online ISBN: 978-3-642-84209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics