Advertisement

Measurement of Extrapulmonary Lung Water

  • A. Net
  • C. Triginer
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 13)

Abstract

Lung edema implies an enhanced passage of water from the intravascular space to the extravascular space. By definition, it is an excess of fluid in the lung. The endothelial lesion present in noncardiogenic edema produces an enhanced capillary permeability to water and proteins. A rise in pressure at the level of the lung capillary will increase the hydrostatic pressure difference between the capillary and the interstice, resulting in cardiogenic or hemodynamic lung edema [1–3].

Keywords

Pulmonary Edema Pulmonary Blood Flow Mean Transit Time Extravascular Lung Water Cold Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crandall ED, Staub NC, Goldberg HS, Effros RM (1983) Recent developments in pulmonary edema. Ann Intern Med 99: 808–822PubMedGoogle Scholar
  2. 2.
    Staub NC, Hogg JC (1980) Conference report of workshop on the measurement of lung water. Crit Care Med 8: 752–759PubMedCrossRefGoogle Scholar
  3. 3.
    Cutillo A (1987) The clinical assessment of lung water. Chest 92: 319–324PubMedCrossRefGoogle Scholar
  4. 4.
    Traunbaugh RF, Lewis FR, Christensen JM, et al (1980) Lung water changes after thermal injury: the effects of crystalloid resuscitation and sepsis. Ann Surg 192: 479–488CrossRefGoogle Scholar
  5. 5.
    Staub NC (1986) Clinical use of lung water measurements. Report of a workshop. Chest 90: 588–594Google Scholar
  6. 6.
    Chinard FP, Enns T (1954) Transcapillary pulmonary exchange of water in dog. Am J Physiol 178: 197–202PubMedGoogle Scholar
  7. 7.
    Mihm FG, Feeley TW, Jamieson SW (1987) Thermal dye double indicator dilution measurement of lung water in man: comparison with gravimetric measurements. Thorax 42: 72–76PubMedCrossRefGoogle Scholar
  8. 8.
    Effros RM (1985) Lung water measurements with the mean transit time approach. J Appl Physiol 59: 673–683PubMedGoogle Scholar
  9. 9.
    Laggner AN, Lenz K, Druml W, Kleinberger G (1987) Reproducibility of thermal-dye lung water measurements by a lung water computer in critically ill patients. Crit Care Med 15: 606–608PubMedCrossRefGoogle Scholar
  10. 10.
    Mihm FG, Feeley TW, Rosenthal MH, Lewis F (1982) Measurement of extravascular lung water in dogs using the thermal-green dye indicator dilution method. Anesthesiology 57: 116–122PubMedCrossRefGoogle Scholar
  11. 11.
    Beckett RC, Gray BA (1982) Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol 53: 1614–1621PubMedGoogle Scholar
  12. 12.
    Carlile PV, Gray BA (1984) Type of lung injury influences and the thermal-dye estimation of extravascular lung water. J Appl Physiol 57: 680–686PubMedGoogle Scholar
  13. 13.
    Sibbald WJ, Warshawski FJ, Short AK, Harris J, Lefcoe MS, Holliday RL (1983) Clinical studies of measuring extravascular lung water by the thermal dye technique in critically ill patients. Chest 83: 725–731PubMedCrossRefGoogle Scholar
  14. 14.
    Hasinott I, Ducas J, Prewitt RM (1988) Increased cardiac output increases lung water in canine permeability pulmonary edema. J Crit Care 3: 225–231CrossRefGoogle Scholar
  15. 15.
    Carlile PV, Lowery DD, Gray BA (1986) Effect of PEEP and type of injury on thermaldye estimation of pulmonary edema. J Appl Physiol 60: 22–31PubMedGoogle Scholar
  16. 16.
    Lowery DD, Carlile PV, Mc Curdy HT, Gray BA (1984) Effect of PEEP on the thermodilution measurement of edema in focal and diffuse lung injury. Am Rev Respir Dis 129: 94–103Google Scholar
  17. 17.
    Saul GM, Feeley TW, Mihm FG (1987) The effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema. Crit Care Med 10: 667–669CrossRefGoogle Scholar
  18. 18.
    Peitzman AB, Corbett WA, Shires GT, Lynch NJ, Shires GT (1981) The effect of increasing end-expiratory pressure on extravascular lung water. Surgery 90: 439–445PubMedGoogle Scholar
  19. 19.
    Basset G, Bouchonnet MF, Marsac J, Sutton J, Botter F, Capitini R (1981) Simultaneous detection of deuterium oxide and indocyanine green in flowing blood. J Appl Physiol 50: 1367–1371PubMedGoogle Scholar
  20. 20.
    Sznajder JI, Zucker AR, Wood LD, Long GR (1986) The effects of plasmapheresis and hemofìltration on canine acid aspiration pulmonary edema. Am Rev Respir Dis 134: 222–228PubMedGoogle Scholar
  21. 21.
    Krogh A, Lindhard J (1912) Measurement of the blood flow through the lungs of man. Scandinav Arch Physiol 27: 100–125Google Scholar
  22. 22.
    Cander L, Foster RL (1959) Determination of pulmonary parenchymal tissue volume and capillary blood flow in man. J Appl Physiol 14: 541–551Google Scholar
  23. 23.
    Sackner MA, Greeneltch D, Heiman MS, Epstein S, Atkins N (1975) Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue volume and cardiac output measured by a rebreathing technique. Am Rev Respir Dis 111: 157–165PubMedGoogle Scholar
  24. 24.
    Hall WL, Hyde RW, Borgsted HH, Kilpper RE (1972) Determination of pulmonary parenchymal tissue of the human lung by rebreathing dimethyl ether and acetylene. Federation Proc 31: 348–362 (abstract)Google Scholar
  25. 25.
    Petrini MF, Peterson BT, Hyde RW (1978) Lung tissue volume and blood flow by rebreathing: theory. J Appl Physiol 44: 795–802PubMedGoogle Scholar
  26. 26.
    Triebwaser JH, Johnson RL, Burpo RP, Campbell JC, Reardon WC, Blomquist CG (1977) Non-invasive determinations of cardiac output by a modified acetylene rebreathing procedure utilizing mass spectrometer measurements. Aviat Space Environ Med 48: 203–208Google Scholar
  27. 27.
    Severinghaus JW (1977) Pulmonary vascular function. Am Rev Respir Dis 115: 149–158PubMedGoogle Scholar
  28. 28.
    Peterson BT, Petrini MF, Hyde RW, Schreiner BF (1978) Pulmonary tissue volume in dogs during pulmonary edema. J Appl Physiol 44: 782–795PubMedGoogle Scholar
  29. 29.
    Burma GM, Saidel GM (1983) Pulmonary blood flow and tissue volume: model analysis of rebreathing estimation methods. J Appl Physiol 55: 205–211PubMedGoogle Scholar
  30. 30.
    Petrini MF, Peterson BT, Hyde RW, Lam V, Utell MJ, Kallay MC (1982) Uneven gas mixing during rebreathing assessed by simultaneously measuring dead space. J Appl Physiol 53: 930–939PubMedGoogle Scholar
  31. 31.
    Hook C, Meyer M (1982) Pulmonary blood flow, diffusing capacity and tissue volume by rebreathing: theory. Respir Physiol 48: 255–279PubMedCrossRefGoogle Scholar
  32. 32.
    Gonzalez Mangado N, Barberá JA, Vallejo J, Lahoz F (1984) Determinación del volumen de tejido y flujo sanguíneo pulmonar con C2H2 y DME (técnica de Petrini). Arch Bronconeumol 20 (Suppl 1): 15–16Google Scholar
  33. 33.
    Sastre J, Renedo G, Gonzalez Mangado N (1984) Ceroidosis pulmonar. Arch Bronco neumol 20 (Suppl 1): 30–31Google Scholar
  34. 34.
    Glauser FL, Wilson AF, Carothers L, Higi J, White D, Davis J (1975) Pulmonary parenchymal tissue volume measurements in graded degrees of pulmonary edema in dog. Circ Res 36: 229–235PubMedGoogle Scholar
  35. 35.
    Friedman M, Kaufman SH, Wilkins SA Jr (1980) Analysis of rebreathing measurements of pulmonary tissue volume in pulmonary edema. J Appl Physiol 48: 66–71PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. Net
  • C. Triginer

There are no affiliations available

Personalised recommendations