Skip to main content

Physical Picture of Parametric Phenomena and Ponderomotive Effects in Solids

  • Conference paper
Book cover Nonlinear Optics in Solids

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 9))

  • 215 Accesses

Abstract

In this paper a physical picture is given of the important class of three wave parametric decay processes occurring in nonlinear optics of solids. Starting from the radiation pressure on a single particle a general expression for the ponderomotive force in dense matter at rest and in motion is derived. In a second step the formulae are applied to parametric processes of nonlinear optics and it is shown that in terms of wave pressure the quantitative analysis is much more concise, systematic and intuitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Godwin, Phys. Rev. Letters 28, 85 (1972).

    Article  ADS  Google Scholar 

  2. J.P. Freidberg, R.W. Mitchell, R.L. Morse, and L.I. Rudsinski, Phys. Rev. Letters 28, 795 (1972).

    Article  ADS  Google Scholar 

  3. P. Mulser, J. Opt. Soc. Am. B 2, 1814 (1985).

    Article  ADS  Google Scholar 

  4. P.N. Lebedev, Ann. Phys. 6, 433 (1901).

    Article  Google Scholar 

  5. E. Nichols and G.F. Hull, Ann. Phys. 12, 225 (1903).

    Article  MATH  Google Scholar 

  6. W. Gerlach and A. Golsen, Z. Phys. 15, 1 (1923).

    Article  ADS  Google Scholar 

  7. H.A.H. Boot, S.A. Self, and R.B.R. Shersby-Harvie, J. Electron. Control 4, 434 (1958).

    Article  Google Scholar 

  8. A.V. Gapunov and M.A. Miller, Soy. Phys. JETP 7, 168 (1958).

    Google Scholar 

  9. T.W.B. Kibble, Phys. Review 150, 1060 (1966).

    Article  ADS  Google Scholar 

  10. H. Hora, D. Pfirsch, and A. Schlüter, Z. Naturforsch. 22a, 278 (1967).

    ADS  Google Scholar 

  11. F.A. Hopf, P. Meystre, M.O. Scully, and W.H. Louisell, Opt. Comm. 18, 413 (1976);

    Article  ADS  Google Scholar 

  12. F.A. Hopf, P. Meystre, M.O. Scully, and W.H. Louisell, Phys. Rev. Letters 37, 1342 (1976).

    Article  ADS  Google Scholar 

  13. R.W. Müller, Averaged Effect of Strong-Focusing Fields, in Annual Report GSI-88–17 (ISSN 0171–4546), Darmstadt, 1988, p. 26.

    Google Scholar 

  14. L.D. Landau and E.M. Lifshitz, Mechanics, Pergamon, Oxford, 1976; p. 93.

    Google Scholar 

  15. J. Kupersztych, Phys. Rev. Letters 54, 1385 (1985).

    Article  ADS  Google Scholar 

  16. R.D. Brooks and Z.A. Pietrzyk, Phys. Fluids 30, 3600 (1987).

    Article  ADS  Google Scholar 

  17. D.A. D’Ippolito and J.R. Myra, Phys. Fluids 28, 1895 (1985).

    Article  ADS  MATH  Google Scholar 

  18. B.I. Cohen and Th.D. Rognlien, Phys. Fluids 28., 2793 (1985).

    Google Scholar 

  19. Ph.L. Similon, A.N. Kaufman, and D.D. Holm, Phys. Fluids 29, 1900 (1986).

    Article  ADS  Google Scholar 

  20. See: The Mechanical Effects of Light, in J. Opt. Soc. Am. B2, Nr. 11 (1985), p. 1751, 1776.

    Google Scholar 

  21. E.L. Raab, M. Prentiss, A. Cable, S. Chu, and D.E. Pritchard, Phys. Rev. Letters 5. 9, 2631 (1977).

    Google Scholar 

  22. F. Diedrich, E.Peik, J.M. Chen, W. Quint, and H. Walther, Phys. Rev. Letters 59, 2931 (1987).

    Article  ADS  Google Scholar 

  23. J. Dalibard and C. Cohen-Tanoudji, J. Opt. Soc. Am. B2, 1707 (1985).

    Article  ADS  Google Scholar 

  24. B.W. Boreham and B. Luther-Davies, J. Appl. Phys. 50, 2533 (1979).

    Article  ADS  Google Scholar 

  25. W. Becker, R.R. Schlicher, M.O. Scully, and K. Wodkiewicz, J. Opt. Soc. Am. B4, 743 (1987).

    Article  ADS  Google Scholar 

  26. K. Lee, D.W. Forslund, J.M. Kindel, and E.L. Lindmann Phys. Fluids 20, 51 (1977).

    Article  ADS  Google Scholar 

  27. C. Max and C. McKee, Phys. Rev. Letters 32, 1336 (1977).

    Article  ADS  Google Scholar 

  28. P. Mulser and C. van Kessel, Phys. Rev. Letters 38, 902 (1977).

    Article  ADS  Google Scholar 

  29. O. Willi and P.T. Rumsby, Opt. Comm. 31, 45 (1981).

    Article  ADS  Google Scholar 

  30. W.B. Mori, C. Joshi, J.M. Forslund, and J.M. Kindel, Phys. Rev. Letters 60, 1298 (1988).

    Article  ADS  Google Scholar 

  31. Such a decomposition is not unique in rigorous mathematical terms, however, the arbitrariness is small as long as the amplitude E(x) changes slowly over one wavelength and v o is much less than the phase velocity of the wave. In the opposite case the concept of ponderomotive force becomes meaningless.

    Google Scholar 

  32. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford, 1980, p. 118.

    Google Scholar 

  33. M.L. Sawley, J. Plasma Phys. 32, 487 (1984).

    Article  ADS  Google Scholar 

  34. M. Kruskal, J. Math. Phys. 3, 806 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. W. Schneider, Elektronenbeschleunigung durch inhomogene Langmuirwellen hoher Amplitude, Thesis, Tech. Hochschule Darmstadt, 1984 (unpublished). Part of it is published in P. Mulser and W. Schneider, Excitation of Nonlinear Electron Plasma Waves and Particle Acceleration by Laser, in Twenty Years of Plasma Physics, B. McNamara ed., World Scientific, Philadelphia, 1985, p. 280.

    Google Scholar 

  36. W.K.H. Panowsky and Melba Phillips, Classical Electricity and Magnetism,Addison-Wesley, Reading Mass., 1962 Sec.6–6.

    Google Scholar 

  37. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford 1981, Secs. 15, 16.

    Google Scholar 

  38. R. Becker and F. Sauter, Electromagnetic Fields and Interactions,Dover, New York, 1982, Vol.I, Sec.35.

    Google Scholar 

  39. J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, Sec. 2. 22.

    Google Scholar 

  40. P. Penfield and H.A. Haus, Electrodynamics of Moving Media,M.I.T. Press, Cambridge, Mass., 1967, chaps. 7 and 8.

    Google Scholar 

  41. V.P. Silin, Sov. Phys. JETP 21, 1127 (1965).

    ADS  Google Scholar 

  42. F.F. Chen, Introduction to Plasma Physics, Plenum Press, New York, 1976, p. 264.

    Google Scholar 

  43. There exists another qualitative explanation in the literature which at first glance works in the OTSI case; however, it is inconsistent and when applied to the PDI it fails. Therefore we do not follow this attempt further.

    Google Scholar 

  44. K. Nishikawa, J. Phys. Soc. Japan 24, 916 and 1152 (1968).

    Google Scholar 

  45. P. Mulser, A. Giulietti, and M. Vaselli, Phys. Fluids 27, 2035 (1984).

    Article  ADS  MATH  Google Scholar 

  46. P. Mulser, Ponderomotive Force Effects in Laser-Plasma Interaction, in Inertial Confinement Fusion, EUR 11930 EN, eds. A. Caruso and E. Sindoni, Bologna, 1989, p. 54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Mulser, P. (1990). Physical Picture of Parametric Phenomena and Ponderomotive Effects in Solids. In: Keller, O. (eds) Nonlinear Optics in Solids. Springer Series on Wave Phenomena, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84206-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84206-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84208-5

  • Online ISBN: 978-3-642-84206-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics