Skip to main content

Phase Conjugation

  • Conference paper

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 9))

Abstract

This chapter describes the principles of optical phase conjugation and examines the nonlinear processes of four-wave mixing and stimulated scattering that give rise to phase conjugated wavefronts. Applications for good phase conjugating systems are considered along with the optical requirements for the materials. Possible future developments in the field are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Giuliano C.R., “Applications of optical phase conjugation”, Physics Today, 27–35, (April 1981).

    Google Scholar 

  2. Feinberg J., “Photorefractive nonlinear optics”, Physics Today, 46–52, (Oct 1988).

    Google Scholar 

  3. Zeldovich B.Ya., Pilipetsky N.F., Shkunov V.V., “Principles of Phase Conjugation”, ( Springer-Verlag, Berlin, 1985 ).

    Google Scholar 

  4. Feinberg J., “Self-pumped, continuous wave phase conjugator using internal reflections”, Opt. Lett., 7 (10), 486–488, (1982).

    Article  ADS  Google Scholar 

  5. Scott A.M., Waggott P., “Low-intensity phase conjugation by self-pumped Brillouin-induced four-wave mixing”, J. Mód. Opt. 35 (3), 473–481, (1988).

    Article  ADS  Google Scholar 

  6. Hall T.J., Jaura R., Connors L.M., Foote P.D., “The photorefractive effect–a review”, Prog. Quant. Electron. 10 (2), 77–146, (1985).

    ADS  Google Scholar 

  7. Sutter K., Hul iger J., Günter P., “Photorefractive effects in the organic crystal 2 - cyclooctylamino - 5 - nitropyridine (COANP) doped with 7, 7, 8, 8 - tetracyanochinodimethane (TCNQ)”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), postdeadline paper PD1.

    Google Scholar 

  8. Feinberg J., “Asymmetric self-defocusing in an optical beam from the photorefractive effect”, J. Opt. Soc. Am., 72 (1), 46–51, (1982).

    Article  ADS  Google Scholar 

  9. Lam J.F., “Origin of phase conjugate waves in self-pumped photorefractive mirrors”, Appl. Phys. Lett., 46 (10), 909–911, (May 1985).

    Article  ADS  Google Scholar 

  10. Foote P.D., “Optically induced anisotropic light diffraction in photorefractive crystals”, PhD Thesis, University of London (1987).

    Google Scholar 

  11. Foote P.D., Hall T.J., Powell A.K., “Simulated photorefractive scattering in barium titanate’, Int. Symp. on Technologies for Opto-Electronics, Cannes, 16–20 Nov 1987, Proc. SPIE, 864, 90–97.

    Google Scholar 

  12. Mullen R.A., Vickers D.J., Pepper D.M., “Seeded stimulated photorefractive scattering”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), 204–207.

    Google Scholar 

  13. McFarlane A., Steel D.G., “Laser oscillation using resonator with self-pumped phase conjugate mirror”, Opt. Lett., 8 (4), 208–209, (1983).

    Article  ADS  Google Scholar 

  14. Chiou A.E., Yeh P., “Laser-beam clean-up using photorefractive two-wave mixing and optical phase conjugation’, Opt. Lett., 11 (7), 461–463, (1986).

    Article  ADS  Google Scholar 

  15. MacCormack S., Eason R.W., “Sequential power transfer between stripes of a laser diode array via photorefractive two beam coupling in BaTiO3.”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), 333–335.

    Google Scholar 

  16. Fairchild P., Davis K., Valley M., “Coherent beam combination in barium titanate”, J. Opt. Soc. Am. B, 5 (8), 1758–1762, (1988).

    Article  ADS  Google Scholar 

  17. Stephens R.R., Craig R.R., Narayanan A.A., Lind R.C., Giuliano C.R., “Single and multiple element 4-pass phase conjugate master oscillator power amplifier using diode laser”, Optics News, 11–12, (Dec 1989).

    Google Scholar 

  18. Rockwell D.A., Giuiano C.R., “Coherent coupling of laser gain media using phase conjugation”, Opt. Lett., 11 (3), 147–149, (1986).

    Article  ADS  Google Scholar 

  19. Chiou A.E., Yeh P., Parallel image subtraction using a phase conjugate Michelson interferometer, Opt. Lett., 11 (5), 306–308, (1986).

    Article  ADS  Google Scholar 

  20. White J.O., Yariv A., “Real-time image processing via four wave mixing in a photorefractive medium”, Appl. Phys. Lett., 37 (1), 5–7, (1980).

    Google Scholar 

  21. Pauliat G., Herriau J.P., Delboulbé A., Roosen G., Huignard J.P., “Dynamic beam deflection using photorefractive gratings in Bi12SiO20 crystals’, J. Opt. Soc. Am. B, 3 (2), 306–313, (1986).

    Article  ADS  Google Scholar 

  22. Yeh P., Chiou A.E.T, Hong J., “Optical interconnection using photorefractive dynamic holograms”, Appl. Opt., 27, 2093–2096, 1988.

    ADS  Google Scholar 

  23. Foote P.D., Hall T.J., Connors L.M., `High speed two input real time optical correlation using photorefractive BSO’, Opt. and Laser Tech., 18 (1), 39–42, 1986.

    Article  ADS  Google Scholar 

  24. Klumb H., Herden A., Kobialka T., Laeri F., Tschudi T., “Active coherent optical feedback system with phase conjugating image amplifier”, 5 (11), 2379–2385, (1988).

    Google Scholar 

  25. Ewbank M.D., Yeh P., Khoshnevisan M., Feinberg J., “Time reversal by an interferometer with coupled phase-conjugate reflectors”, Opt. Lett., 10 (6), 282–284, (Jun 1985).

    Article  ADS  Google Scholar 

  26. White II.J., Aldridge N. B., Lindsay I., “Digital and analogue holographic associative memories’, Opt. Eng. 27 (1), 30–37, (1988).

    Google Scholar 

  27. Anderson D.Z., Benkert C., Hermanns A., “Multistable and time sequencing photorefractive ring resonators”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), postdeadline paper PD4.

    Google Scholar 

  28. Lininger D.M., Martin P.J., Anderson D.Z., `Bistable ring resonator utilizing saturable photorefractive gain and loss“, Opt. Lett., 14 (13), 697699, (1989).

    Google Scholar 

  29. Paek E.G., Wullert II J.R., Patel J.S., “Holographic implementation of a learning machine based on a multicategory perceptron algorithm”, Opt. Lett., 14 (23), 1303–1305, (1989).

    Article  ADS  Google Scholar 

  30. Gauthier D.J., Narum P., Boyd R.W., “Observation of deterministic chaos in a phase conjugate mirror”, Phys. Rev. Lett., 58 (16), 16401643, (April 1987).

    Google Scholar 

  31. Cronin-Golomb M., Kwong S.K., Yariv A., “Optical oscillators with photorefractive gain”, in Günter P. (Ed), Electro-optic and photorefractive materials, Part V, Springer Procs in Physics 18, ( Springer-Verlag, Berlin, 1986 ), 291–307.

    Google Scholar 

  32. Swinburne G.A., Hall T.J., Powell A.K., “Large modulation effects in photorefractive crystals”, IERE Int. Conf. Holographic Systems, Components and Applications, Bath, UK, Sept 1989, 116–123.

    Google Scholar 

  33. Rajbenbach H., Imbert B., Huignard J.P., Mallick S., “Near infrared four wave mixing with gain and self starting oscillators with photorefractive GaAs”, Opt. Lett., 14 (1), 78–80, (1989).

    Article  ADS  Google Scholar 

  34. Walsh K., Hall T.J., “Gain Exceeding Absorptive Losses in Photorefractive GaAs”Appl. Opt., 28 (1), 16–17, (1989).

    ADS  Google Scholar 

  35. Sochava S.L., Stepanov S.I., Petrov M.P., “Ring oscillator using a pho-in a photorefractive medium”, Appl. Phys. Lett., 37 (1), 5–7, (1980).

    Google Scholar 

  36. Glass A.M., Olson D.H., Cronin-Golomb M., `Self pumped phase conjugation in InP:Fe“, Appl. Phys. Lett., 54 (20), 1968–1970, (1989).

    Google Scholar 

  37. Stace C., Powell A.K., Walsh K., HaLL T.J., “Coupling modulation in photorefractive materials by applying i.c. electric fields”, Opt. Comm. 70 (6), 509–514, (April 1989).

    Article  ADS  Google Scholar 

  38. Walsh K., Powell A.K., Stace C., Hall T.J., “Techniques for the enhancement of space charge fields in photorefractive media”, To appear J. Opt. Soc. Am. B, (Spring 1990 ).

    Google Scholar 

  39. Stepanov S.I., Petrov M.P. “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field”, Opt. Comm.., 53 (5), 292–295, (1985).

    Article  ADS  Google Scholar 

  40. Sayano K., Yariv A., Neurgaonkar R.R., “Order-of-magnitude reduction on the photorefractive response time in rhodium-doped Sro.6Bao.4Nb2O6 with a dc electric field”, Opt. Lett., 15 (1), 9–11, (1990).

    Article  ADS  Google Scholar 

  41. Partovi A., Kost A., Garmire E. M., Valley G.C., Klein M.B., “Characterisation of band-edge photorefractive effect in compound semiconductors”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), p157.

    Google Scholar 

  42. Garmire E., Jokerst N.M., Kost A., Danner A., Dapkus P.D., “Optical nonlinearities due to carrier transport in semiconductors’, J. Opt. Soc. Am. B, 6 (4), 579–587, (1989).

    Article  ADS  Google Scholar 

  43. Miller D.A.B., “Electric field dependence of optical properties of quantum well structures”, in Günter P. (Ed), Electro-optic and photorefractive materials, Part I, Springer Proceedings in Physics 18, 35–49, ( Springer-Verlag, Berlin, 1986 )

    Google Scholar 

  44. Glass A.M., “Future trends in photorefractive and nonlinear optics”, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France ), Oral Presentation.

    Google Scholar 

  45. Horowitz B.A., Corbett F.J., “The PROM–Theory and applications for the Pockels readout optical modulator”, Opt. Eng. 17 (4), 353–364, (1978).

    Google Scholar 

  46. Johnson R.V., Tanguay A.R., “Stratified volume holographic optical elements”, Opt. Lett. 13 (3), 189–191, (1988).

    Article  ADS  Google Scholar 

  47. Ralph S.E., Capasso F., Malik R.J., “Transient photorefractive effect in graded gap superlattices’, Société Francaise d’Optique technical digest, Topical meeting of Photorefractive Materials, Effects and Devices II, Jan 17–19 1990, Aussois (France), 231–234.

    Google Scholar 

  48. McMichael I., Yeh P., Beckwith P., “Nondegenerate two-wave mixing in ruby”, Opt. lett. 13 (6), 500–502, (June 1988).

    Article  ADS  Google Scholar 

  49. Gaeta C.J., Lam J.F., Lind R.C., “Continuous-wave self pumped optical phase conjugation in atomic sodium vapor”, Opt. Lett., 14 (4), 245–247, (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Hall, T.J., Powell, A.K. (1990). Phase Conjugation. In: Keller, O. (eds) Nonlinear Optics in Solids. Springer Series on Wave Phenomena, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84206-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84206-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84208-5

  • Online ISBN: 978-3-642-84206-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics