Skip to main content

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 240))

  • 20 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Computer Algorithms, Addison-Wesley, Mass., 1974.

    MATH  Google Scholar 

  2. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. Data Structures and Algorithms, Addison-Wesley, Mass., 1983.

    MATH  Google Scholar 

  3. Anderson, G.A. Multiple Match Resolvers: A New Design Method IEEE Trans. Computers, Vol. C-23, No. 12, Dec. 1974.

    Google Scholar 

  4. Astrahan, M.M.; Chamberlin, D.D. Implementation of a Structured English Query Language, Comm. of the ACM, Vol. 18, No. 10, Oct. 1975.

    Google Scholar 

  5. Banin, R. Hardware Accelerators in the Design Automation Environment Proc. 21st Design Automation Conf. 1984, p. 648.

    Google Scholar 

  6. Batcher, K.E. Sorting networks and their applications Proc. AFIPS 1968 Spring Jt. Comp. Conf., pp. 307-314.

    Google Scholar 

  7. Batcher, K.E. STARAN Parallel Processor System Hardware Proc. AFIPS 1974 National Computer Conf., Vol. 43, AFIPS press, 1974, pp. 405–410.

    Google Scholar 

  8. Batcher, K.E. Design of a Massively Parallel Processor IEEE Trans. Computers, Vol. C-29, No. 9, Sept. 1980, pp. 837–840.

    Article  Google Scholar 

  9. Batcher, K.E. Bit-Serial Parallel Processing Systems IEEE Trans. Computers, Vol. C-31, No. 5, May 1982, pp. 377–384.

    Article  Google Scholar 

  10. Bollert, W. Programmiersprachen der vierten und fünften Generation, McGraw-Hill-Texte, 1987.

    Google Scholar 

  11. Bode, A.; Händler, W. Rechnerarchitektur, Band 2, Springer Verlag 1982.

    Google Scholar 

  12. Berkowich, S.; Pullen, J.M. The Vector Associative Processor: A VLSI System Architecture for Information Processing Proc. of IEEE Conf. Computer Design 1984, pp. 382-387.

    Google Scholar 

  13. Bush, V. As We May Think, Atlantic Monthly, Vol. 176, Jul. 1945.

    Google Scholar 

  14. Codd, E.F. A Relational Model of Data Large Shared Data Banks Communications of the ACM, Vol. 13, 1970, pp. 370–387.

    Google Scholar 

  15. Crane, B.A. PEPE Computer Architecture IEEE Computer Conference 6, 1972, pp. 691–693.

    Google Scholar 

  16. Carpenter, G.A.; Grossberg, S. The ART of Adaptive Pattern Recognition by a Self-Organizing Neural Network, IEEE Computer, March 1988.

    Google Scholar 

  17. Davis, E.W. STARAN Parallel Processor System Software Proc. AFIPS 1974 National Computer Conf., Vol. 43, AFIPS press, 1974, pp. 17–22.

    Google Scholar 

  18. Dingeldine, J.R.; Martin, H.G., Paterson, W.M. Operating System and Software Support System for PEPE Sigmore Computer Conference on Parallel Proc, 1973.

    Google Scholar 

  19. Endbericht zum Verbundprojekt Entwurf Integrierter Schaltkreise (E.I.S.) Juni 1988, Lehrstuhl für Technische Informatik, J.W. Goethe-Universität Frankfurt.

    Google Scholar 

  20. Eustace, A.; Mukhopadhyay, A. A Determinstic Finite Automation Approach to Design Rule Checking for VLSI Proc. 19th Design Automation Conf. 1982, pp. 712-717.

    Google Scholar 

  21. Feldman, J.A.; Rovner, P.D. An ALGOL-based Associative Language Communications of the ACM, Vol. 12, 1969, pp. 439–449.

    MATH  Google Scholar 

  22. Fernstrom, C.; Kruzela, I.; Svensson B. LUCAS — Associative Array Processor Lecture notes in Computer Science, Springer Verlag, 1986.

    Google Scholar 

  23. Flynn, M.J. Some Computer Organizations and Their Effectiveness IEEE Trans. Comp., Vol. C-21, No. 9, Sept. 1972, pp. 948–960.

    Article  MathSciNet  Google Scholar 

  24. Force Computers System 68000 VME, SYS68K/CPU-1 User’s manual First Edition, Jan. 1983.

    Google Scholar 

  25. Foster, C.C. Content Adressable Parallel Processors Computer Science Series, van Nostrand Reinhold Company, 1976.

    Google Scholar 

  26. Frei, E.H.; Goldberg, J. A Method for Resolving Multiple Responses in a Parallel Search File IRE Trans. Electr. Comp., Vol. C-10, No. 4, Dec.1961.

    Google Scholar 

  27. Gall, R.; Nagl, M. Software-Implementation assoziativer Speicher Elektron. Rechenanl., Jahrg. 23 (1981), H. 2, pp. 61–71.

    Google Scholar 

  28. Giloi, W. Rechnerarchitektur Heidelberger Taschenbücher, Springer-Verlag 1981.

    Google Scholar 

  29. Goser, K.; Foelster, C.; Rueckert, U. Intelligent Memories in VLSI Information Sciences, Vol. 34 (1984), pp. 61–82.

    Article  Google Scholar 

  30. Grosspietsch, K.E.; Huber, H.; Müller, A. The Concept of a Fault-Tolerant and Easily-Testable Associative Memory Proc. 16th IFTCS, 1986, pp.34-39.

    Google Scholar 

  31. Händler, W. The Impact of Classification Schemes on Computer Architecture Proc. Int. Conf. Parallel Processing, 1977, pp. 7-13.

    Google Scholar 

  32. Hansen, S.R. Integration of a Simulation Accelerator for Design and Test Proc. Compeuro87, IEEE Computer Society Press, 1987, pp. 415-421.

    Google Scholar 

  33. Hartenstein, R.; Hauck, R.; Hirschbeil, A.; Nebel, W. and Weber, M. PISA, a CAD Package and Special Hardware for Pixeloriented Layout Analysis GMD-Studien Nr. 94, 1984, pp.67-76.

    Google Scholar 

  34. Hehmann, D. Programmiersprachen zur Assoziativverarbeitung Diplomarbeit am Lehrstuhl für Informatik III, Universität Dortmund, 1982.

    Google Scholar 

  35. Hilberg, W. Das assoziative Feld. Eine neue Schaltungsstruktur mit überaus guten Speichereigenschaften, Elektronische Rechenanlagen, Jahrg. 26, Nr.4, 1984.

    Google Scholar 

  36. Hilberg, W. Digitale Speicher, Oldenbourg-Verlag, München, 1987.

    Google Scholar 

  37. Hochstädter, V. Entwicklung und Realisierung eines Assoziativspeicherbausteins in NMOS-Technologie mit Hilfe eines Full-Custom-Chip-Entwurfs Diplomarbeit am Lehrstuhl für Technische Informatik, J.W. Goethe-Universität Frankfurt, 1986.

    Google Scholar 

  38. Hopfield, J.J.; Tank, D.W. ‘Neural’ Computation of Decisions in Optimazation Problems, Biological Cybernetics 52, pp. 1451–2152, 1985.

    MathSciNet  Google Scholar 

  39. Hwang, K.; Briggs, F.A. Computer Architecture and Parallel Processing Mc-Graw-Hill International Student Series, 1986.

    Google Scholar 

  40. Hancock, J.M.; DasGupta, S. Tutorial on Parallel Processing for Design Automation Applications Proc. 23rd Design Automation Conf. 1986, pp. 69-77.

    Google Scholar 

  41. Hockney, R.W.; Jesshope, C.R. Parallel Computers Adam Hilger Ltd., Bristol, 1981.

    Google Scholar 

  42. Hilf, W.; Nausch, A. M68000 Familie Teil 2: Anwendung und 68000 Bausteine te-wi Verlag 1984.

    Google Scholar 

  43. Hirata, M.; Yamada, H. Nagai, K.; Tagahashi, K. A Versatile Data String-Search VLSI, IEEE Journal of Solid State Circ. Vol. 13, No.2, 1988.

    Google Scholar 

  44. Jessen, E. Assoziative Speicher, Friedrich Vieweg &; Sohn, Braunschweig, 1965.

    Google Scholar 

  45. Jessen, E. Architektur digitaler Rechenanlagen, Springer-Verlag, Berlin, 1975.

    Book  MATH  Google Scholar 

  46. Jones, S.R.; Jalowiecki, I.P.; Hedge, J.S.; Lea, M. A 9-kbit Associative Memory for High-Speed Parallel Processing Applikations IEEE Journ. Solid-State Circuits, vol 23, No. 2, 1988.

    Google Scholar 

  47. Kadota, H.; Miyake, J.; Nishimichi, Y.; Kudoh, H.; Kagawa, K. An 8-kbit Content-Adressable and Reentrant Memory IEEE JSSC, ol. SC-20, No. 5, Oct. 1985, pp. 951–957.

    Google Scholar 

  48. Klaus, G.; Liebscher, H. Wörterbuch der Kybernetik, Fischer-Verlag, Frankfurt, 1979.

    Google Scholar 

  49. Kohonen, T. Self-Organization and Associative Memory Springer-Verlag 1984.

    Google Scholar 

  50. Kohonen, T. The ‘Neural’ Phonetic Typewriter, IEEE Computer, March 1988.

    Google Scholar 

  51. Koo, J.T. Integrated-Circuit Content-Addressable Memories IEEE JSSC, Vol. SC-5. Oct. 1970, pp. 208–215.

    Google Scholar 

  52. Knödler, B.; Rosenstiel, W. A PROLOG Preprocessor for Warren’s Abstract Instruction Set Microprocessing and Microprogramming, Vol. 18 (1986), pp. 71–80.

    Google Scholar 

  53. Lamb, S. An Add-in Recognition Memory for S-100 Bus Microcomputers — Part 1 to 3 Computer Design, Aug. 1978, pp. 140-142, Sept. 1978, pp. 162-168, Oct. 1978, pp. 182-186.

    Google Scholar 

  54. Lang, R.G. High-level Language for Associative Processing with STARAN Proc. 1976 Int. Conf. Parallel Processing, pp.170-176.

    Google Scholar 

  55. Lea, R.M. VLSI and WSI Associative String Processors for costeffective Parallel Processing The Computer Journal, Vol. 29, No.6, 1986, pp.486–494.

    Google Scholar 

  56. Lee, C.Y. An Algorithm for Path Connections and its Applications IEEE Trans. on Electronic Computers, Vol. VEC-10, 1961, pp. 346–365.

    Article  Google Scholar 

  57. Lee, C.Y. Intercommunicating Cells, Basis for a Distributed Logic Computer Proc. AFIPS Fall Jt. Computer Conf. 1962, pp. 130-136.

    Google Scholar 

  58. Leilich, H.-O. Assoziative Speicher, Taschenbuch der Informatik, Bd.1, Springer-Verl. 1974.

    Google Scholar 

  59. Lewin, M. Retrieval of Ordered Lists from a Content-Addressed Memory RCA-Review, Vol. 23, June 1962, pp. 215–229.

    Google Scholar 

  60. Linsker, R. Self-Organization in a Perceptual Network IEEE Computer, March 1988.

    Google Scholar 

  61. Lipowski, G.J. The Architectur of a Large Associative Processor, SJCC, 1970, pp. 385-396.

    Google Scholar 

  62. Lipp, H.-M. Methodical Aspects of Logic Synthesis, Proc. IEEE, Vol. 71, Jan. 1983, pp 88–97.

    Article  Google Scholar 

  63. Lin, C.S.; Smith, D.C.P.; Smith, J.M. The Design of a Associative Memory for Relational Data Base Applications, ACM TODS, vol. 1, 1976, pp. 53–65.

    Article  Google Scholar 

  64. Lin, C.S.; Smith, D.C.P. The Design of a Rotating Associative Array Memory for a Relational Data Base Management Application, Prc. VLDB, 1975, pp. 453-455.

    Google Scholar 

  65. Martini, C. Akzeleration eines Design Rule Checkers (DRC) unter Verwendung eines assoziativen Koprozessors, Diplomarbeit am Lehrstuhl für Technische Informatik J.W. Goethe-Universität Frankfurt, 1987.

    Google Scholar 

  66. Mehlhorn, K. Data Structures and Algorithms I: Sorting and Searching, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  67. Miller, H.S. Resolving Multiple Responses in an Associative Memory IEEE Trans. Electr. Comp., ol. EC-13, Oct. 1964, pp. 614–616.

    Article  Google Scholar 

  68. Mead, C. and Conway, L. Introduction to VLSI Systems Addison Wesley Publ. Comp., 1980.

    Google Scholar 

  69. Motsch, W.; Frowein, J. Zeiteffiziente Realisierung komplexer Suchprozesse an assoziativ gespeicherten Daten Elektron. Rechenanl., Jahrg. 21 (1979), H. 2, pp.65–73.

    MATH  Google Scholar 

  70. Malms, M.; Kubera, R.; Röhl, H. Leistungssteigerung durch ein inhaltsadressierbares Speichersystem Elektron. Rechenanl., Jahrg. 26 (1984), H.4, pp.179–185.

    Google Scholar 

  71. Nodes, T.A.; Smith, J.L.; Hecht-Nielsen, R. A Fuzzy Associative Memory Module and its Application to Signal Processing IEEE 1985, pp. 1511-1514.

    Google Scholar 

  72. Ogura, T.; Yamada, S.; Nikaido, T. A 4-kbit Associative Memory LSI IEEE JSSC, Vol. SC-20, No.6, Dec.1985, pp.1277–1282.

    Google Scholar 

  73. Palm, G. On Associative Memory Biolog. Cybernetics, 36, 1980, pp. 19–31.

    Article  MATH  Google Scholar 

  74. Palm, G. How Useful are the Associative Memories? Biomathematics, North-Holland, 1980, pp. 145–153.

    Google Scholar 

  75. Palm, G. Neural Assemblies, an Alternative Approach to Artificial Intelligence Springer New York, 1982.

    Google Scholar 

  76. Parhami, B. Associative Memories and Processors: An Overview and Selected Bibliography Proc. of IEEE, Vol. 61, No. 6, June 1973, pp. 722–730.

    Google Scholar 

  77. Puttkamer, E. von A Microprogrammed LISP Machine Microprocessing and Microprogramming, Vol. 12 (1983), pp. 9–14.

    Google Scholar 

  78. Ramamoorthy, C.V.; Turner, J.L.; Wah, B.W. A Design of a Fast Cellular Associative Memory for Ordered Retrieval IEEE Trans. Comp., Vol. C-27, No. 9, Sept. 1978, pp. 800–815.

    Article  Google Scholar 

  79. Roll, G.; Waldschmidt, K.; Strugala, M.; Tavangarian, D. An Universal Associative Processor Proc. Int. Symposium Mini-and Microcomputer and their Applications, 1985, pp. 177–181.

    Google Scholar 

  80. Roll, G.; Strugala, M.; Tavangarian, D.; Waldschmidt, K. Ein Assoziativprozessor auf der Basis eines modularen vollparallelen Assoziativspeicherfeldes NTG Fachberichte Band 92, Architektur und Betrieb von Rechensystemen, VDE Verlag 1986, pp. 84-99.

    Google Scholar 

  81. R Unterstützung paralleler Rechnerarchitekturen Dissertation am Lehrstuhl für Technische Informatik, J.W. Goethe-Universität, 1987.

    Google Scholar 

  82. Rosenblatt, F. Two Theorems of Statistical Separability in the Perceptron. In Mechanisation of Thought Process, Proc. Symp. Nat. Phys. Lab., London, 1958.

    Google Scholar 

  83. Rosin, R.F. An Organization of an Associative Cryogenic Computer Proc.SJCC, 1962, pp. 203-211.

    Google Scholar 

  84. Rueckert, U.; Kreuzer, I.; Goser, K. A VLSI Concept for an Adaptive Associative Matrix Based on Neural Networks Proc. Compeuro87, IEEE Computer Society Press, 1987, pp. 31-34.

    Google Scholar 

  85. Savit, D.A.; Love, H.H.; Trooper, R.E. ASP: A New Concept in Language and Mashine Organisation, SJCC 1967, pp 87-102.

    Google Scholar 

  86. Schmidt, J.W.; Mall, M. PASCAL/R Report, Universität Hamburg, Report 66, 1980.

    Google Scholar 

  87. Schnupp, P. PROLOG-eine nichtprozedurale Sprache zur Programmierung von Expertensystemen und zum ‘rapid prototyping’, in: Intelligenztechnologie Giloi, Schulz-Vorberg, Ed., Teubner, Verlag, 1983.

    Google Scholar 

  88. Schulz, M. Betrieb eines parallelen assoziativen Koprozessors am IBM-PC/AT Diplomarbeit am Lehrstuhl für Technische Informatik, J.W. Goethe-Universität Frankfurt, 1987.

    Google Scholar 

  89. Schulz, M.; Darianian, M.; Tavangarian, D.; Waldschmidt, K. An Associative Co-Processor Architecture with the UNIX Operating System for the Acceleration of CAD Tools Mini-and Microcomp. Appl., ISMM, Spain, 1988.

    Google Scholar 

  90. Schuster, S.A.; Nguyen, H.B.; Ozkarahan, E.A.; Smith, K.C. RAP.2 — An Associative Processor for Databases and its Applications IEEE Trans. Computers, Vol. C-28, No. 6, June 1979, pp. 446–457.

    Google Scholar 

  91. Seitzer, J. Arbeitsspeicher für Digitalrechner Springer Verlag, 1975.

    Google Scholar 

  92. Simony, K. Theoretische Elektrotechnik, VEB-Verlag, Berlin, 1981.

    Google Scholar 

  93. Steigner, C.H.; Roll. G.; Waldschmidt, K. Das Konzept der ASSKO-Datenflußarchitektur NTG Fachberichte Band 80, Struktur und Betrieb von Rechensystemen, VDE Verlag 1982, pp. 42-59.

    Google Scholar 

  94. Steinbuch, K. Lernende Automaten, Elektr. Rechenanlagen, 1956, H3, S. 112–118, H4, S.172-175.

    Google Scholar 

  95. Strugala, M.; Tavangarian, D.; Waldschmidt, K. Konzept und integrierte Schaltung eines neuartigen modularen Assoziativspeichers, GMD-Studie Nr. 94, 1984, pp. 270–283.

    Google Scholar 

  96. Strugala, M.; Roll, G.; Waldschmidt, K. VLSI Realization of a Full Parallel Associative Memory Array, Proc. of Euromicro 85, North-Holland Publ. Comp., 1985, pp. 147-156.

    Google Scholar 

  97. Strugala, M.; Roll, G.; Tavangarian, D.; Waldschmidt, K. Konzept eines vollparallelen Assoziativspeichers, GMD-Studien Nr. 110, 1986, pp. 276-286.

    Google Scholar 

  98. Strugala, M.; Tavangarian, D.; Waldschmidt, K.; Roll, G. An Associative Processor as a Design Rule Check Accelerator Proc. of Compeuro87, IEEE Computer Society Pregs, 1987, pp. 426-431.

    Google Scholar 

  99. Strugala, M. Ein assoziativer Koprozessor: Entwurf, Realisierung und Beispielanwendungen zur Akzeleration von CAD-Verfahren, Diss. an d. J.W. Goethe-Univ. Frankfurt, 1988.

    Google Scholar 

  100. Stüttgen, H. A Hierarchical Associative Processing System Lecture Notes in Computer Science, Springer Verlag, 1985.

    Google Scholar 

  101. Su, S.Y.W.; Nguyen, L.H.; Emam, A.; Lipovski, G.J. The Architectural Features and Implementation Techniques of the Multicell CASSM IEEE Trans. Computers, Vol. C-28, No. 6, June 1979, pp. 430–445.

    Google Scholar 

  102. Su, S.Y.W. Cellular Logic Devices: Concepts and Applications Computer, March 1979, pp. 11-25.

    Google Scholar 

  103. Seeber, R.R.; Lindquist, A.B. Associative Memory with Ordered Retrieval IBM Jour. of Research and Development, Vol. 6, No. 1, Jan. 1962, p. 126.

    Article  Google Scholar 

  104. Slade, A.E.; McMahon, H.O. A Cryotron Catalog Memory System Eastern Jt. Computer Conference 1956, pp. 115-120.

    Google Scholar 

  105. Stonebraker, M.; Wong, E.; Kreps, P.; Held, G. Implementation of Integrity Constraints and Views by Query Modifikation, Proc. SIGMOD Workshop on Management of Data, San Josè, 1975.

    Google Scholar 

  106. Rumpf, K.H. (Ed.) Intelligent Memory from AEG-Telefunken paves the Way to New Applications of Microcomputers (Synfobase) Pressinformation der Fa. AEG, 1982.

    Google Scholar 

  107. Tavangarian, D. A Novel Modular Expandable Associative Memory Proc. Euromicro 1982, North-Holland Publ. Comp.

    Google Scholar 

  108. Tavangarian, D. A General Purpose Associative Processor Proc. Euromicro 1983, North-Holland Publ. Comp.

    Google Scholar 

  109. Tavangarian, D. Ortsadressierbarer Assoziativspeicher Patentschrift DE3151385-C2, Deutsches Patentamt, München.

    Google Scholar 

  110. Tavangarian, D. Associative Random Access Memory (ARAM) Elektron. Rechenanl., Jahrg. 27 (1985), H.5, pp.264–278.

    Google Scholar 

  111. Tavangarian, D. Flagorientierte Arithmetik-Logik-Einheiten für inhaltsadressierbare Daten NTG Fachberichte Band 92, Architektur und Betrieb von Rechensystemen, VDE Verlag 1986, pp. 56-71.

    Google Scholar 

  112. Tavangarian, D. Konzept eines flagorientierten vollparallelen Assoziativprozessors auf der Basis der Flagalgebra, 10. GI/ITG-Fachtagung Architektur und Betrieb von Rechensystemen, Paderborn, 1988.

    Google Scholar 

  113. Thurber, K.J. Large scale computer architecture: parallel and associative processors Hayden, 1976.

    Google Scholar 

  114. Thurber, K.J.; Wald, L.D. Associative and Parallel Processors Computing Surveys, Vol. 7, No. 4, Dec. 1975.

    Google Scholar 

  115. Tavangarian, D.; Waldschmidt, K. Konzept eines assoziativen flagorientierten Prozessors 3. E.I.S.-Workshop, GMD-Studie Nr.126, Bonn, 1987.

    Google Scholar 

  116. Tagahashi, K.; Yamada, H.; Nagai, H. Matsumi, K. A New String Search Hardware Architecture for VLSI, Computer Architecture, Juni 1986.

    Google Scholar 

  117. Waldschmidt, K., Tavangarian, D., Roll, G., Strugala, M.; Hochstädter, V. Ein Assoziativspeicher für schnelle Prozessorsysteme NTG-Fachberichte Bd. 96, Mikroelektr. für die Informationstechnik, Vermittlung, Übertragung und Verarbeitung, 1986.

    Google Scholar 

  118. Waldschmidt, K. Associative Processors and Memories: Overview and Current Status Proc. of Compeuro87, IEEE Computer Society Press. 1987.

    Google Scholar 

  119. Wang, W. Untersuchung, Vergleich und Implementierung von Algorithmen für arithmetische, logische und Suchoperationen für das assoziative Speicherkonzept ARAM Diplomarbeit am Lehrstuhl für Technische Informatik, J.W. Goethe-Universität Frankfurt, 1986.

    Google Scholar 

  120. Weissberger, A.J. On-Chip Cache Memory gives uP’s a Big-System Look Electronic Design, Oct. 1983, pp. 133-139.

    Google Scholar 

  121. Wilson, D.E. The PEPE Support Software System IEEE Computer Conference 6, 1972, pp 61–64.

    Google Scholar 

  122. Wirth, N. Algorithmen und Datenstrukturen B.G. Teubner, Stuttgart 1975.

    Google Scholar 

  123. Wirt, N. Algorithms + Datastructures = Programs Prentice-Hall, Englewood Cliffs, 1976.

    Google Scholar 

  124. Widrow, G.; Hoff, M.E. Adaptive Switching Circuits, IRE, Western Electronic Show and Convention, Convention Record, Part 4, 1960, pp. 96-104.

    Google Scholar 

  125. Wade, J.P.; Sodini, CG. Dynamic Cross-Coupled Bit-Line Content Adressable Memory Cell for High-Density Arrays IEEE JSSC, Vol. SC-22, No. 1, Feb. 1987, pp. 119–121.

    Google Scholar 

  126. Widrow, B.; Winter, R. Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition IEEE Computer, March 1988.

    Google Scholar 

  127. Yau, S.S.; Fung, H.S. Associative Processor Architecture — A Survey Computing Surveys, Vol. 9, No. 1, March 1977, pp.3–27.

    MATH  Google Scholar 

  128. Zwischenberichte zum Verbundprojekt Entwurf integrierter Schaltkreise, 1984–1987, Lehrstuhl für Techn. Informatik, J.W. Goethe-Universität Frankfurt.

    Google Scholar 

  129. Zloof, M.M. Query-by-Example: A Data Base Language IBM Systems Journal, Vol. 16, No. 4, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tavangarian, D. (1990). Literatur. In: Flagorientierte Assoziativspeicher und -prozessoren. Informatik-Fachberichte, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84171-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84171-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52487-8

  • Online ISBN: 978-3-642-84171-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics