Skip to main content

Vascular Response to Hypoxia

  • Chapter

Part of the Update in Intensive Care and Emergency Medicine book series (UICM,volume 12)

Abstract

The vascular response to hypoxia is a powerful mechanism to maintain organ function and to reduce the negative effects that hypoxia otherwise would produce. To achieve this, the response in the pulmonary circulation, vasoconstriction, is opposite to the general response in the systemic circulation, vasodilation. The reasons for these different responses, and possible mechanisms producing them, will be discussed in this chapter.

Keywords

  • Coronary Blood Flow
  • Intermittent Hypoxia
  • Vascular Response
  • Acute Hypoxia
  • Hypoxic Pulmonary Vasoconstriction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Visiting professor from “Hermanos Ameijeiras” Hospital, Havana, Cuba, supported by the Swedish Institute.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-84169-9_7
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-84169-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fishman AP (1985) Pulmonary circulation. In: Fishman AP, Fisher AB, Geiger SR (eds) Handbook of physiology. section 3: The respiratory system, vol I: Circulation and nonrespiratory functions. American Physiological Society, Bethesda, pp 93–165

    Google Scholar 

  2. Beyne J (1942) Influence de l’anoxémie sur la grande circulation et sur la circulation pulmonaire. C R Soc Biol Paris 136: 399–400

    Google Scholar 

  3. Von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 112: 301–320

    Google Scholar 

  4. Reeves JT, Herget J (1984) Experimental models of pulmonary hypertension. In: Weir EK, Reeves JT (eds) Pulmonary hypertension. Futura, New York, pp 361–391

    Google Scholar 

  5. McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38: 99–134

    PubMed  CAS  Google Scholar 

  6. Voelkel NF (1986) Mechanisms of hypoxic pulmonary vasoconstriction. Am Rev Respir Dis 133: 1186–1195

    PubMed  CAS  Google Scholar 

  7. Grover RF, Wagner WW Jr, McMurty IF, Reeves JT (1983) Pulmonary circulation. In: Shepherd JT, Abboud FM, Geiger SR (eds) Handbook of physiology. section 2: The cardiovascular system, vol III: Peripheral circulation and organ blood flow. Part 1. American Physiological Society, Bethesda, pp 103–136

    Google Scholar 

  8. Robin ED, Theodore J, Burke CM, et al (1987) Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin Sci 72: 283–287

    PubMed  CAS  Google Scholar 

  9. Hoshino Y, Obara H, Kusunoki M, Fujii Y, Iwai S (1988) Hypoxic contractile response in isolated human pulmonary artery: role of calcium ion. J Appl Physiol 65: 2468–2474

    PubMed  CAS  Google Scholar 

  10. Hottenstein O, Mitzner W, Bierkamper GG (1982) Hypoxia alters membrane potentials in rat main pulmonary artery smooth muscle: a possible calcium mechanism (abstract). Physiologist 25: 276

    Google Scholar 

  11. Harder DR, Madden JA, Dawson C (1985) A membrane electrical mechanism for hypoxic vasoconstriction of small pulmonary arteries from cat. Chest 88: 233s - 235s

    PubMed  CAS  Google Scholar 

  12. DeMey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall: importance of the endothelium. Circ Res 51: 439–447

    CAS  Google Scholar 

  13. Holden WE, McCall E (1984) Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res 7: 101–112

    PubMed  CAS  Google Scholar 

  14. Warren JB, Maltby NH, MacCormack D, Barnes PJ (1989) Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin Sci 77: 671–676

    PubMed  CAS  Google Scholar 

  15. Levitzky MG, Newell JC, Krasney JA, Dutton RE (1977) Chemoreceptor influence on pulmonary blood flow during unilateral hypoxia in dogs. Respir Physiol 31: 345–356

    PubMed  CAS  Google Scholar 

  16. Wilson LB, Levitzky MG (1989) Chemoreflex blunting of hypoxic pulmonary vasoconstriction is vagally mediated. J Appl Physiol 66: 782–791

    PubMed  CAS  Google Scholar 

  17. Kawashima A, Kubo K, Hirai K, Yoshikawa S, Matsuzawa Y, Kobayashi T (1989) Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Resp Physiol 76: 79–92

    CAS  Google Scholar 

  18. Rudolph AM, Yuan S (1966) Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest 45: 399–411

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Yamaguchi T, O’Brien RF, Hanson WL, Wagner WW Jr, McMurtry IF (1989) Prostacyclin contributes to inhibition of hypoxic pulmonary vasoconstriction by alkalosis. Prostaglandins 38: 53–63

    PubMed  CAS  Google Scholar 

  20. Guazzi M, Alimento M, Berti M, Fiorentini C, Galli C, Tamborini G (1989) Enhanced hypoxic pulmonary vasoconstriction in hypertension. Circulation 79: 337–343

    PubMed  CAS  Google Scholar 

  21. Mélot C, Dechamps P, Hallemans R, Decroly P, Mols P (1989) Enhancement of hypoxic pulmonary vasoconstriction by low dose almitrine bismesylate in normal humans. Am Rev Respir Dis 139: 111–119

    PubMed  Google Scholar 

  22. Doekel RC, Weir EK, Looga R, Grover RF, Reeves JT (1978) Potentiation of hypoxic pulmonary vasoconstriction by ethyl alcohol in dogs. J Appl Physiol (Respirat Environ Exercise Physiol) 44: 76–80

    CAS  Google Scholar 

  23. Hales CA, Rouse ET, Slate JL (1978) Influence of aspirin and indomethacin on variability of alveolar hypoxic vasoconstriction. J Appl Physiol (Respirat Environ Exercise Physiol) 45: 33–39

    CAS  Google Scholar 

  24. Mentzer RM Jr, Alegre CA, Nolan SP (1976) The effects of dopamine and isoproterenol on the pulmonary circulation. J Thorac Cardiovasc Surg 71: 807–814

    PubMed  CAS  Google Scholar 

  25. Weir EK, Chidsey CA, Weil JV, Grover RF (1976) Minoxidil reduces pulmonary vascular resistance in dogs and cattle. J Lab Clin Med 88: 885–894

    PubMed  CAS  Google Scholar 

  26. Sill V, Kaukel E, Voelkel N, Siemssen S (1974) The significance of cyclic 3’S’-AMP for the Euler-Liljestrand mechanism. Pneumologie 150: 337–344

    CAS  Google Scholar 

  27. Young TE, Lundquist LJ, Chesler E, Weir EK (1983) Comparative effects of nifedipine, verapamil, and ditiazen on experimental pulmonary hypertension. Am J Cardiol 51: 195–200

    PubMed  CAS  Google Scholar 

  28. Kjaeve J, Bjertnaes LJ (1989) Interaction of verapamil and halogenated inhalation anesthetics on hypoxic pulmonary vasoconstriction. Acta Anaesthesiol Scand 33: 193–198

    PubMed  CAS  Google Scholar 

  29. Rubin LJ, Lazar JD (1981) Influence of prostaglandin synthesis inhibitors on pulmonary vasodilatory effects of hydralazine in dogs with hypoxic pulmonary vasoconstriction. J Clin Invest 67: 193–200

    PubMed  CAS  PubMed Central  Google Scholar 

  30. D’Oliveira M, Sykes MK, Chakrabarti MK, Orchard C, Keslin J (1981) Depression of hypoxic pulmonary vasoconstriction by sodium nitroprusside and nitroglycerine. Br J Anaesth 53: 11–18

    PubMed  Google Scholar 

  31. Hales CA, Westphal D (1978) Hypoxemia following the administration of sublingual nitroglycerin. Am J Med 65: 911–917

    PubMed  CAS  Google Scholar 

  32. Kay JM, Grover RF (1975) Lung mast cells and hypoxic pulmonary hypertension. In: Herzog H, Widimski J (eds) Progress in respiration research, vol 9. Pulmonary hypertension. Karger, Basel, pp 157–164

    Google Scholar 

  33. Brizzee BL, Walker BR (1989) Chronic propranolol attenuates hypoxic pulmonary vasoconstriction in conscious rats. Resp Physiol 77: 55–64

    CAS  Google Scholar 

  34. Speizer FE, Doll R, Heat P (1968) Observations on recent increase in mortality from asthma. Br Med J 1: 335–339

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Bjertnaes LJ (1978) Hypoxia induced pulmonary vasoconstriction in man: inhibition due to diethylether and halothane anesthesia. Acta Anaesthesiol Scand 22: 570–588

    PubMed  CAS  Google Scholar 

  36. Hurtig JB, Tait AR, Loh L, Sykes MK (1977) Reduction of hypoxic pulmonary vasoconstriction by nitrous oxide administration in the isolated perfused cat lung. Can Anaesth Soc J 24: 510

    Google Scholar 

  37. Sykes MK, Davies DM, Loh L, Jastrzebski J, Chakrabarti MK (1976) The effect of methoxyflurane on pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in the isolated perfused cat lung. Br J Anaesth 48: 191

    PubMed  CAS  Google Scholar 

  38. Marshall C, Lindgren L, Marshall BE (1984) Effects of halothane, enflurane and isoflurane on hypoxic pulmonary vasoconstriction in rat lungs in vitro. Anesthesiology 60: 304–308

    PubMed  CAS  Google Scholar 

  39. Kjaeve J, Bjertnaes LJ (1989) Interaction of verapamil and halogenated inhalation anesthetics on hypoxic pulmonary vasoconstriction. Acta Anaesthesiol Scand 33: 193–198

    PubMed  CAS  Google Scholar 

  40. Bjertnas A, Hauge A, Nakkin KE, Bredesen JE (1976) Hypoxic pulmonary vasoconstriction: inhibition due to anesthesia. Acta Physiol Scand 96: 283–285

    Google Scholar 

  41. Unger M, Atkins M, Briscoe WA, King TKC (1977) Potentiation of pulmonary vasoconstrictor response with repeated intermitent hypoxia. J Appl Physiol 43: 662–667

    PubMed  CAS  Google Scholar 

  42. Pirlo AP, Benumof JL, Trousdale FR (1981) Potentiation of lobar hypoxic pulmonary vasoconstriction by intermittent hypoxia in dogs. Anesthesiology 55: 226–230

    PubMed  CAS  Google Scholar 

  43. Marshall B (1981) Another point of view on intermittent hypoxia. Anesthesiology 55: 200–202

    PubMed  CAS  Google Scholar 

  44. Benumoff JL (1983) Intermittent hypoxia increases lobar hypoxic pulmonary vasoconstriction. Anesthesiology 58: 399–404

    Google Scholar 

  45. Bindslev L, John A, Hedenstierna G, Baehrendtz S, Santesson J (1985) Hypoxic pulmonary vasoconstriction in the human lung: effect of repeated hypoxic challenges during anesthesia. Anesthesiology 62: 621–625

    PubMed  CAS  Google Scholar 

  46. Reid L (1979) The pulmonary circulation: remodeling in growth and disease. Am Rev Respir Dis 119: 531–547

    PubMed  CAS  Google Scholar 

  47. Sobin SS, Tremer HM, Hardy JD, Chiodi HP (1983) Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J Appl Physiol (Respirat Environ Exercise Physiol) 55: 1445–1455

    CAS  Google Scholar 

  48. Stanbrook HS, Morris KG, McMurtry IF (1984) Prevention and reversal of hypoxic pulmonary hypertension by calcium antagonists 1–3. Am Rev Respir Dis 130: 81–85

    PubMed  CAS  Google Scholar 

  49. Kerr JS, Riley DJ, Frank MM, Treldstad RL, Frankel HM (1984) Reduction of chronic hypoxic pulmonary hypertension in the rat by ß-aminopropionitrile. J Appl Physiol (Respirat Environ Execise Physiol) 57: 1760–1766

    CAS  Google Scholar 

  50. Weitzenblum E, Hirth C, Ducolone A, Mirhom R, Rasaholinjanahary S, Ehrhart M (1981) Prognostic value of pulmonary artery pressure in chronic obstructive lung disease. Thorax 36: 752–758

    PubMed  CAS  Google Scholar 

  51. Bates DV (1979) Chronic bronchitis and emphysema: the search for their natural history. In: Macklem PT, Permutt S (eds) The lung in the transition between health and disease. Dekker, New York, pp 1–13

    Google Scholar 

  52. Weitzenblum E, Schrijen F, Mohan-Kumar T, Colas des Francs V, Lockhart A (1988) Variability of the pulmonary vascular response to acute hypoxia in chronic bronchitis. Chest 94: 772–778

    PubMed  CAS  Google Scholar 

  53. MacNee W, Wathen CG, Hannan WJ, Flenley DC, Muir AL (1983) Effects of pirbuterol and sodium nitroprusside on pulmonary hemodynamics in hypoxic cor pulmonale. Br Med J 287: 1169–1172

    CAS  Google Scholar 

  54. Biernacki W, Prince K, Whyte K, Macnee W, Flenley DC (1989) The effect of six months of daily treatment with the p2-agonist oral pirbuterol on pulmonary hemodynamics in patients with chronic hypoxic cor pulmonale receiving long-term oxygen therapy. Am Rev Respir Dis 139: 492–497

    PubMed  CAS  Google Scholar 

  55. Jin H, Yang R-H, Thornton RM, Chen Y, Jackson R, Oparil S (1988) Atrial natriuretic peptide lowers pulmonary arterial pressure in hypoxia-adapted rats. J Appl Physiol 65: 1729–1735

    PubMed  CAS  Google Scholar 

  56. Archer SL, Johnson GJ, Gebhard RL, et al (1989) Effect of dietary fish oil on lung lipid profile and hypoxic pulmonary hypertension. J Appl Physiol 66: 1662–1673

    PubMed  CAS  Google Scholar 

  57. Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234 (Heart Circ Physiol 3): H582 - H591

    PubMed  CAS  Google Scholar 

  58. Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM (1976) Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ Res 38: 20–25

    PubMed  CAS  Google Scholar 

  59. Borgström L, Johannson H, Siesjö BK (1975) The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 93: 423–432

    PubMed  Google Scholar 

  60. Heistad D, Abboud FM (1980) Circulatory adjustments to hypoxia. Circulation 61: 463–470

    PubMed  CAS  Google Scholar 

  61. Miyabe M, Jones MD Jr, Koehler RC, Traystman RJ (1989) Chemodenervation does not alter cerebrovascular response to hypoxic hypoxia. Am J Physiol 257 (Heart Circ Physiol 26): H1413 - H1418

    PubMed  CAS  Google Scholar 

  62. Klass M, Wadsworth R (1989) Contraction followed by relaxation in response to hypoxia in the sheep isolated middle cerebral artery. Eur J Pharmacol 168: 187–192

    Google Scholar 

  63. Elliot DA, Ong BY, Bruni JE, Bose D (1989) Role of endothelium in hypoxic contraction of canine basilar artery. Br J Pharmacol 96: 949–955

    Google Scholar 

  64. Pearce WJ, Ashwal S, Cuevas J (1989) Direct effects of graded hypoxia on intact and denuded rabbit cranial arteries. Am J Physiol (Heart Circ Physiol 26 ): H824 - H833

    Google Scholar 

  65. Winn HR, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rats. Am J Physiol 241 (Heart Circ Physiol 10): H235 - H242

    PubMed  CAS  Google Scholar 

  66. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35: 262–271

    CAS  Google Scholar 

  67. Pinard E, Puiroud S, Seylaz J (1989) Role of adenosine in cerebral hypoxic hyperemia in the unanesthetized rabbit. Brain Res 481: 124–130

    PubMed  CAS  Google Scholar 

  68. Heuser JAD, Lassen NA, Nilson B, Norberg K, Siesjö BK (1976) Evidence against H and K+ as the main factors in the regulation of cerebral blood flow during epileptic discharges, acute hypoxemia, amphetamine intoxication, and hypoglycemia. A micro-electrode study. In: Betz E (ed) Ionic actions on vascular smooth muscle. Springer, Berlin Heidelberg New York, pp 110–116

    Google Scholar 

  69. Kettler J, Ong BY (1989) Ouabain prevents loss of autoregulation in rat pial arterioles caused by reoxygenation after a brief hypoxic episode. Can J Pharmacol 67: 423–427

    CAS  Google Scholar 

  70. Wei EP, Ellis EF, Kontos HA (1980) Role of prostaglandins in pial arteriolar response to CO2 and hypoxia. Am J Physiol 238 (Heart Circ Physiol 7): H226 - H230

    PubMed  CAS  Google Scholar 

  71. Shapiro W, Wasserman AJ, Baker JP, Patterson JL Jr (1970) Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal men. J Clin Invest 49: 2362–2368

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Massik J, Jones MD Jr, Miyabe M, et al (1989) Hypercapnia and response of cerebral blood flow to hypoxia in newborn lambs. J Appl Physiol 66: 1065–1070

    PubMed  CAS  Google Scholar 

  73. Kissen I, Weiss HR (1989) Cervical sympathectomy and cerebral microvascular and blood flow responses to hypocapnic hypoxia. Am J Physiol 256 (Heart Circ Physiol 25): H460 - H467

    PubMed  CAS  Google Scholar 

  74. Hilton R, Eichholtz F (1925) The influence of chemical factors on the coronary circulation. J Physiol (London) 59: 413–425

    CAS  Google Scholar 

  75. Berne RM, Blackmon JR, Gardner TH (1957) Hypoxemia and coronary blood flow. J Clin Invest 36: 1101–1106

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Nakamura Y, Takahashi M, Takei F, Matsumura N, Schölkens B, Sasamoto H (1969) The change in pulmonary vascular resistance during acute induced hypoxemia — with special reference to coronary vascular reserve. Cardiologia 54: 91–103

    PubMed  CAS  Google Scholar 

  77. Vance JP, Parratt JR, Ledingham I McA (1971) The effects of hypoxia on myocardial blood flow and oxygen consumption: negative role of beta adrenoreceptors. Clin Sci 41: 257–273

    PubMed  CAS  Google Scholar 

  78. Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44: 1–29

    PubMed  CAS  Google Scholar 

  79. Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 238 (Heart Circ Physiol 7): H716 - H728

    PubMed  CAS  Google Scholar 

  80. Detar R (1980) Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction. Am J Physiol 238 (Heart Circ Physiol 7): H761 - H769

    PubMed  CAS  Google Scholar 

  81. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol (London) 68: 213–237

    CAS  Google Scholar 

  82. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317–322

    PubMed  CAS  Google Scholar 

  83. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel and seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50: 228–229

    CAS  Google Scholar 

  84. Richman HG, Wyborny L (1964) Adenine nucleotide degradation in the rabbit heart. Am J Physiol 207: 1139–1145

    PubMed  CAS  Google Scholar 

  85. Merril GF, Downey HF, Yonekura S, Watanabe N, Jones CE (1988) Adenosine deaminase attenuates regional myocardial hypoxia in the dog. Cardiovasc Res 22: 345–350

    Google Scholar 

  86. Gewirtz H, Olsson RA, Most AS (1987) Role of adenosine in mediating the coronary vasodilative response to acute hypoxia. Cardiovasc Res 21: 81–89

    PubMed  CAS  Google Scholar 

  87. Rubio R, Weidmeier VT, Brene RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6: 561–566

    PubMed  CAS  Google Scholar 

  88. Scott JB, Chen WT, Swindall BT, Dabney JM, Haddy FJ (1979) Evidence from bioassay studies indicating a role for adenosine in cardiac ischemic and hypoxic dilation in the dog. Circ Res 45: 451–459

    PubMed  CAS  Google Scholar 

  89. Olsson RA (1970) Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 26: 301–306

    PubMed  CAS  Google Scholar 

  90. Fox AC, Reed GE, Glassman E, Kaltman AJ, Silk BB (1974) Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest 53: 1447–1457

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Wei HM, Kang YH, Merrill GF (1989) Canine coronary vasodepressor responses to hypoxia are abolished by 8-phenyltheophylline. Am J Physiol 257 (Heart Circ Physiol 26): H1043 — H1048

    PubMed  CAS  Google Scholar 

  92. Rubanyi G, Paul RJ (1985) Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 56: 1–10

    PubMed  CAS  Google Scholar 

  93. Kwan YW, Wadsworth RM, Kane KA (1989) Effects of hypoxia on the pharmacological responsiveness of isolated coronary artery rings from the sheep. Br J Pharmacol 96: 849–856

    PubMed  CAS  Google Scholar 

  94. Rubanyi GM, Vanhoutte PM (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol 364: 45–56

    PubMed  CAS  Google Scholar 

  95. van Neuten JM, Vanhoutte PM (1980) Effect of Ca++ antagonist lidoflazine on normoxic and anoxic contractions of canine coronary arterial smooth muscle. Eur J Pharmacol 64: 173–176

    Google Scholar 

  96. Coker SJ, Marshall RJ, Parratt JR, Zeitlin IJ (1981) Does the local myocardial release of prostaglandin E2 or F2alpha contribute to the early consequences of acute myocardial ischaemia? J Mol Cell Cardiol 13: 425–434

    PubMed  CAS  Google Scholar 

  97. Kleber AG (1984) Extracellular potassium accumulation in acute myocardial ischaemia. J Mol Cell Cardiol 16: 389–394

    PubMed  CAS  Google Scholar 

  98. Kwan YW, Wadsworth RM, Kane KA (1989) Hypoxia-and endothelium-mediated changes in the pharmacological responsiveness of circumflex coronary artery rings from the sheep. Br J Pharmacol 96: 857–863

    PubMed  CAS  Google Scholar 

  99. Iqbal A, Vanhoutte PM (1988) Flunarizine inhibits endothelium-dependent hypoxic facilitation in canine coronary arteries through an action on vascular smooth muscle. Br J Pharmacol 95: 789–794

    PubMed  CAS  Google Scholar 

  100. Raberger G, Schütz W, Kraupp O (1975) Coronary reactive hyperaemia and coronary dilator action of adenosine during normal respiration and hypercapnic acidosis in the dog. Clin Exp Pharmacol Physiol 2: 373–382

    CAS  Google Scholar 

  101. Case RB, Greenburg H (1976) The response of canine coronary vascular resistance to local alterations in coronary arterial PCO2. Circ Res 39: 558–566

    PubMed  CAS  Google Scholar 

  102. Neill WA, Hattenhauer M (1975) Impairment of myocardial O2 supply due to hyperventilation. Circulation 52: 854–858

    PubMed  CAS  Google Scholar 

  103. Shepherd JT, Vanhoutte PM (1975) Skeletal muscle blood flow-neurogenic determinants. In: Zelis R (ed) The peripheral circulations. Grune & Stratton, New York, pp 3–55

    Google Scholar 

  104. Bachofen M, Gage A, Bachofen H (1971) Vascular response to changes in blood oxygen tension under various blood flow rates. Am J Physiol 220: 1786–1792

    PubMed  CAS  Google Scholar 

  105. Costin JC, Skinner NS (1970) Effects of systemic hypoxemia on vascular resistance in dog skeletal muscle. Am J Physiol 218: 886–893

    PubMed  CAS  Google Scholar 

  106. Pelletier CL (1972) Circulatory responses to graded stimulation of carotid chemoreceptors in the dog. Circ Res 31: 431–443

    PubMed  CAS  Google Scholar 

  107. Shepherd JT (1981) The lungs as receptor sites for cardiovascular regulation. Circulation 63: 1–10

    PubMed  CAS  Google Scholar 

  108. Heistad DD, Abboud FM, Mark AL, Schmid PG (1972) Impaired reflex vasoconstriction in chronically hypoxemic patients. J Clin Invest 51: 331–337

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Cain SM, Chapler CK (1980) 02 extraction by canine hindlimb during alpha-adrenergic blockade and hypoxic hypoxia. J Appl Physiol 48: 630–685

    Google Scholar 

  110. Granger HJ, Goodman AH, Granger DN (1976) Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res 38: 379–385

    PubMed  CAS  Google Scholar 

  111. Kubes P, Cain SM, Chapler CK (1989) Neural regulation of canine skeletal muscle blood flow during hypoxic hypoxia. Am J Physiol 257 (Heart Circ Physiol 26): H1581 - H1586

    PubMed  CAS  Google Scholar 

  112. Lahiri S, Delaney RG (1976) The nature of response of simple chemoreceptor fibres of carotid body to changes in arterial PO, and PCO2 — H. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. India: Navchetan, New Delhi, pp 18–26

    Google Scholar 

  113. Bayliss WM (1902) On the local reaction of the arterial wall to changes of internal pressure. J Physiol (London) 28: 220–231

    CAS  Google Scholar 

  114. Järhult J, Mellander S (1974) Autoregulation of capillary hydrostatic pressure in skeletal muscle during regional arterial hypo-and hypertension. Acta Physiol Scand 91: 32–41

    PubMed  Google Scholar 

  115. Lundvall J, Mellander S, Sparks H (1967) Myogenic response to resistance vessels and precapillary sphinters in skeletal muscle during exercise. Acta Physiol Scand 70: 257–268

    PubMed  CAS  Google Scholar 

  116. Pohost GM, Newell JB, Hamlin NP, Powell WJ Jr (1976) Observations on autoregulation in skeletal muscle: the effects of arterial hypoxia. Cardiovasc Res 10: 405–412

    PubMed  CAS  Google Scholar 

  117. Sparks HV Jr, Belloni FL (1978) The peripheral circulation: local regulation. Ann Rev Physiol 40: 67–92

    CAS  Google Scholar 

  118. Scott JB, Rudko M, Radawski D, Haddy ET (1970) Role of osmolarity, K+ H+ Mg++ and O2 in local blood flow regulation. Am J Physiol 218: 338–345

    PubMed  CAS  Google Scholar 

  119. Morganroth ML, Mohrman DE, Sparks HV (1975) Prolonged vasodilation following fatiguing exercise of dog skeletal muscle. Am J Physiol 229: 38–43

    PubMed  CAS  Google Scholar 

  120. Dornhorst AC (1963) Hyperaemia induced by exercise and ischaemia. Br Med Bull 19: 137–140

    Google Scholar 

  121. Duling BR (1978) Oxygen, carbon dioxide and hydrogen ions as local factors causing vasodilation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilation. Karger, Basel, pp 193–199

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Almirall, J., Hedenstierna, G. (1991). Vascular Response to Hypoxia. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive