Fishman AP (1985) Pulmonary circulation. In: Fishman AP, Fisher AB, Geiger SR (eds) Handbook of physiology. section 3: The respiratory system, vol I: Circulation and nonrespiratory functions. American Physiological Society, Bethesda, pp 93–165
Google Scholar
Beyne J (1942) Influence de l’anoxémie sur la grande circulation et sur la circulation pulmonaire. C R Soc Biol Paris 136: 399–400
Google Scholar
Von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 112: 301–320
Google Scholar
Reeves JT, Herget J (1984) Experimental models of pulmonary hypertension. In: Weir EK, Reeves JT (eds) Pulmonary hypertension. Futura, New York, pp 361–391
Google Scholar
McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38: 99–134
PubMed
CAS
Google Scholar
Voelkel NF (1986) Mechanisms of hypoxic pulmonary vasoconstriction. Am Rev Respir Dis 133: 1186–1195
PubMed
CAS
Google Scholar
Grover RF, Wagner WW Jr, McMurty IF, Reeves JT (1983) Pulmonary circulation. In: Shepherd JT, Abboud FM, Geiger SR (eds) Handbook of physiology. section 2: The cardiovascular system, vol III: Peripheral circulation and organ blood flow. Part 1. American Physiological Society, Bethesda, pp 103–136
Google Scholar
Robin ED, Theodore J, Burke CM, et al (1987) Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin Sci 72: 283–287
PubMed
CAS
Google Scholar
Hoshino Y, Obara H, Kusunoki M, Fujii Y, Iwai S (1988) Hypoxic contractile response in isolated human pulmonary artery: role of calcium ion. J Appl Physiol 65: 2468–2474
PubMed
CAS
Google Scholar
Hottenstein O, Mitzner W, Bierkamper GG (1982) Hypoxia alters membrane potentials in rat main pulmonary artery smooth muscle: a possible calcium mechanism (abstract). Physiologist 25: 276
Google Scholar
Harder DR, Madden JA, Dawson C (1985) A membrane electrical mechanism for hypoxic vasoconstriction of small pulmonary arteries from cat. Chest 88: 233s - 235s
PubMed
CAS
Google Scholar
DeMey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall: importance of the endothelium. Circ Res 51: 439–447
CAS
Google Scholar
Holden WE, McCall E (1984) Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res 7: 101–112
PubMed
CAS
Google Scholar
Warren JB, Maltby NH, MacCormack D, Barnes PJ (1989) Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin Sci 77: 671–676
PubMed
CAS
Google Scholar
Levitzky MG, Newell JC, Krasney JA, Dutton RE (1977) Chemoreceptor influence on pulmonary blood flow during unilateral hypoxia in dogs. Respir Physiol 31: 345–356
PubMed
CAS
Google Scholar
Wilson LB, Levitzky MG (1989) Chemoreflex blunting of hypoxic pulmonary vasoconstriction is vagally mediated. J Appl Physiol 66: 782–791
PubMed
CAS
Google Scholar
Kawashima A, Kubo K, Hirai K, Yoshikawa S, Matsuzawa Y, Kobayashi T (1989) Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Resp Physiol 76: 79–92
CAS
Google Scholar
Rudolph AM, Yuan S (1966) Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest 45: 399–411
PubMed
CAS
PubMed Central
Google Scholar
Yamaguchi T, O’Brien RF, Hanson WL, Wagner WW Jr, McMurtry IF (1989) Prostacyclin contributes to inhibition of hypoxic pulmonary vasoconstriction by alkalosis. Prostaglandins 38: 53–63
PubMed
CAS
Google Scholar
Guazzi M, Alimento M, Berti M, Fiorentini C, Galli C, Tamborini G (1989) Enhanced hypoxic pulmonary vasoconstriction in hypertension. Circulation 79: 337–343
PubMed
CAS
Google Scholar
Mélot C, Dechamps P, Hallemans R, Decroly P, Mols P (1989) Enhancement of hypoxic pulmonary vasoconstriction by low dose almitrine bismesylate in normal humans. Am Rev Respir Dis 139: 111–119
PubMed
Google Scholar
Doekel RC, Weir EK, Looga R, Grover RF, Reeves JT (1978) Potentiation of hypoxic pulmonary vasoconstriction by ethyl alcohol in dogs. J Appl Physiol (Respirat Environ Exercise Physiol) 44: 76–80
CAS
Google Scholar
Hales CA, Rouse ET, Slate JL (1978) Influence of aspirin and indomethacin on variability of alveolar hypoxic vasoconstriction. J Appl Physiol (Respirat Environ Exercise Physiol) 45: 33–39
CAS
Google Scholar
Mentzer RM Jr, Alegre CA, Nolan SP (1976) The effects of dopamine and isoproterenol on the pulmonary circulation. J Thorac Cardiovasc Surg 71: 807–814
PubMed
CAS
Google Scholar
Weir EK, Chidsey CA, Weil JV, Grover RF (1976) Minoxidil reduces pulmonary vascular resistance in dogs and cattle. J Lab Clin Med 88: 885–894
PubMed
CAS
Google Scholar
Sill V, Kaukel E, Voelkel N, Siemssen S (1974) The significance of cyclic 3’S’-AMP for the Euler-Liljestrand mechanism. Pneumologie 150: 337–344
CAS
Google Scholar
Young TE, Lundquist LJ, Chesler E, Weir EK (1983) Comparative effects of nifedipine, verapamil, and ditiazen on experimental pulmonary hypertension. Am J Cardiol 51: 195–200
PubMed
CAS
Google Scholar
Kjaeve J, Bjertnaes LJ (1989) Interaction of verapamil and halogenated inhalation anesthetics on hypoxic pulmonary vasoconstriction. Acta Anaesthesiol Scand 33: 193–198
PubMed
CAS
Google Scholar
Rubin LJ, Lazar JD (1981) Influence of prostaglandin synthesis inhibitors on pulmonary vasodilatory effects of hydralazine in dogs with hypoxic pulmonary vasoconstriction. J Clin Invest 67: 193–200
PubMed
CAS
PubMed Central
Google Scholar
D’Oliveira M, Sykes MK, Chakrabarti MK, Orchard C, Keslin J (1981) Depression of hypoxic pulmonary vasoconstriction by sodium nitroprusside and nitroglycerine. Br J Anaesth 53: 11–18
PubMed
Google Scholar
Hales CA, Westphal D (1978) Hypoxemia following the administration of sublingual nitroglycerin. Am J Med 65: 911–917
PubMed
CAS
Google Scholar
Kay JM, Grover RF (1975) Lung mast cells and hypoxic pulmonary hypertension. In: Herzog H, Widimski J (eds) Progress in respiration research, vol 9. Pulmonary hypertension. Karger, Basel, pp 157–164
Google Scholar
Brizzee BL, Walker BR (1989) Chronic propranolol attenuates hypoxic pulmonary vasoconstriction in conscious rats. Resp Physiol 77: 55–64
CAS
Google Scholar
Speizer FE, Doll R, Heat P (1968) Observations on recent increase in mortality from asthma. Br Med J 1: 335–339
PubMed
CAS
PubMed Central
Google Scholar
Bjertnaes LJ (1978) Hypoxia induced pulmonary vasoconstriction in man: inhibition due to diethylether and halothane anesthesia. Acta Anaesthesiol Scand 22: 570–588
PubMed
CAS
Google Scholar
Hurtig JB, Tait AR, Loh L, Sykes MK (1977) Reduction of hypoxic pulmonary vasoconstriction by nitrous oxide administration in the isolated perfused cat lung. Can Anaesth Soc J 24: 510
Google Scholar
Sykes MK, Davies DM, Loh L, Jastrzebski J, Chakrabarti MK (1976) The effect of methoxyflurane on pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in the isolated perfused cat lung. Br J Anaesth 48: 191
PubMed
CAS
Google Scholar
Marshall C, Lindgren L, Marshall BE (1984) Effects of halothane, enflurane and isoflurane on hypoxic pulmonary vasoconstriction in rat lungs in vitro. Anesthesiology 60: 304–308
PubMed
CAS
Google Scholar
Kjaeve J, Bjertnaes LJ (1989) Interaction of verapamil and halogenated inhalation anesthetics on hypoxic pulmonary vasoconstriction. Acta Anaesthesiol Scand 33: 193–198
PubMed
CAS
Google Scholar
Bjertnas A, Hauge A, Nakkin KE, Bredesen JE (1976) Hypoxic pulmonary vasoconstriction: inhibition due to anesthesia. Acta Physiol Scand 96: 283–285
Google Scholar
Unger M, Atkins M, Briscoe WA, King TKC (1977) Potentiation of pulmonary vasoconstrictor response with repeated intermitent hypoxia. J Appl Physiol 43: 662–667
PubMed
CAS
Google Scholar
Pirlo AP, Benumof JL, Trousdale FR (1981) Potentiation of lobar hypoxic pulmonary vasoconstriction by intermittent hypoxia in dogs. Anesthesiology 55: 226–230
PubMed
CAS
Google Scholar
Marshall B (1981) Another point of view on intermittent hypoxia. Anesthesiology 55: 200–202
PubMed
CAS
Google Scholar
Benumoff JL (1983) Intermittent hypoxia increases lobar hypoxic pulmonary vasoconstriction. Anesthesiology 58: 399–404
Google Scholar
Bindslev L, John A, Hedenstierna G, Baehrendtz S, Santesson J (1985) Hypoxic pulmonary vasoconstriction in the human lung: effect of repeated hypoxic challenges during anesthesia. Anesthesiology 62: 621–625
PubMed
CAS
Google Scholar
Reid L (1979) The pulmonary circulation: remodeling in growth and disease. Am Rev Respir Dis 119: 531–547
PubMed
CAS
Google Scholar
Sobin SS, Tremer HM, Hardy JD, Chiodi HP (1983) Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J Appl Physiol (Respirat Environ Exercise Physiol) 55: 1445–1455
CAS
Google Scholar
Stanbrook HS, Morris KG, McMurtry IF (1984) Prevention and reversal of hypoxic pulmonary hypertension by calcium antagonists 1–3. Am Rev Respir Dis 130: 81–85
PubMed
CAS
Google Scholar
Kerr JS, Riley DJ, Frank MM, Treldstad RL, Frankel HM (1984) Reduction of chronic hypoxic pulmonary hypertension in the rat by ß-aminopropionitrile. J Appl Physiol (Respirat Environ Execise Physiol) 57: 1760–1766
CAS
Google Scholar
Weitzenblum E, Hirth C, Ducolone A, Mirhom R, Rasaholinjanahary S, Ehrhart M (1981) Prognostic value of pulmonary artery pressure in chronic obstructive lung disease. Thorax 36: 752–758
PubMed
CAS
Google Scholar
Bates DV (1979) Chronic bronchitis and emphysema: the search for their natural history. In: Macklem PT, Permutt S (eds) The lung in the transition between health and disease. Dekker, New York, pp 1–13
Google Scholar
Weitzenblum E, Schrijen F, Mohan-Kumar T, Colas des Francs V, Lockhart A (1988) Variability of the pulmonary vascular response to acute hypoxia in chronic bronchitis. Chest 94: 772–778
PubMed
CAS
Google Scholar
MacNee W, Wathen CG, Hannan WJ, Flenley DC, Muir AL (1983) Effects of pirbuterol and sodium nitroprusside on pulmonary hemodynamics in hypoxic cor pulmonale. Br Med J 287: 1169–1172
CAS
Google Scholar
Biernacki W, Prince K, Whyte K, Macnee W, Flenley DC (1989) The effect of six months of daily treatment with the p2-agonist oral pirbuterol on pulmonary hemodynamics in patients with chronic hypoxic cor pulmonale receiving long-term oxygen therapy. Am Rev Respir Dis 139: 492–497
PubMed
CAS
Google Scholar
Jin H, Yang R-H, Thornton RM, Chen Y, Jackson R, Oparil S (1988) Atrial natriuretic peptide lowers pulmonary arterial pressure in hypoxia-adapted rats. J Appl Physiol 65: 1729–1735
PubMed
CAS
Google Scholar
Archer SL, Johnson GJ, Gebhard RL, et al (1989) Effect of dietary fish oil on lung lipid profile and hypoxic pulmonary hypertension. J Appl Physiol 66: 1662–1673
PubMed
CAS
Google Scholar
Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234 (Heart Circ Physiol 3): H582 - H591
PubMed
CAS
Google Scholar
Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM (1976) Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ Res 38: 20–25
PubMed
CAS
Google Scholar
Borgström L, Johannson H, Siesjö BK (1975) The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 93: 423–432
PubMed
Google Scholar
Heistad D, Abboud FM (1980) Circulatory adjustments to hypoxia. Circulation 61: 463–470
PubMed
CAS
Google Scholar
Miyabe M, Jones MD Jr, Koehler RC, Traystman RJ (1989) Chemodenervation does not alter cerebrovascular response to hypoxic hypoxia. Am J Physiol 257 (Heart Circ Physiol 26): H1413 - H1418
PubMed
CAS
Google Scholar
Klass M, Wadsworth R (1989) Contraction followed by relaxation in response to hypoxia in the sheep isolated middle cerebral artery. Eur J Pharmacol 168: 187–192
Google Scholar
Elliot DA, Ong BY, Bruni JE, Bose D (1989) Role of endothelium in hypoxic contraction of canine basilar artery. Br J Pharmacol 96: 949–955
Google Scholar
Pearce WJ, Ashwal S, Cuevas J (1989) Direct effects of graded hypoxia on intact and denuded rabbit cranial arteries. Am J Physiol (Heart Circ Physiol 26 ): H824 - H833
Google Scholar
Winn HR, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rats. Am J Physiol 241 (Heart Circ Physiol 10): H235 - H242
PubMed
CAS
Google Scholar
Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35: 262–271
CAS
Google Scholar
Pinard E, Puiroud S, Seylaz J (1989) Role of adenosine in cerebral hypoxic hyperemia in the unanesthetized rabbit. Brain Res 481: 124–130
PubMed
CAS
Google Scholar
Heuser JAD, Lassen NA, Nilson B, Norberg K, Siesjö BK (1976) Evidence against H and K+ as the main factors in the regulation of cerebral blood flow during epileptic discharges, acute hypoxemia, amphetamine intoxication, and hypoglycemia. A micro-electrode study. In: Betz E (ed) Ionic actions on vascular smooth muscle. Springer, Berlin Heidelberg New York, pp 110–116
Google Scholar
Kettler J, Ong BY (1989) Ouabain prevents loss of autoregulation in rat pial arterioles caused by reoxygenation after a brief hypoxic episode. Can J Pharmacol 67: 423–427
CAS
Google Scholar
Wei EP, Ellis EF, Kontos HA (1980) Role of prostaglandins in pial arteriolar response to CO2 and hypoxia. Am J Physiol 238 (Heart Circ Physiol 7): H226 - H230
PubMed
CAS
Google Scholar
Shapiro W, Wasserman AJ, Baker JP, Patterson JL Jr (1970) Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal men. J Clin Invest 49: 2362–2368
PubMed
CAS
PubMed Central
Google Scholar
Massik J, Jones MD Jr, Miyabe M, et al (1989) Hypercapnia and response of cerebral blood flow to hypoxia in newborn lambs. J Appl Physiol 66: 1065–1070
PubMed
CAS
Google Scholar
Kissen I, Weiss HR (1989) Cervical sympathectomy and cerebral microvascular and blood flow responses to hypocapnic hypoxia. Am J Physiol 256 (Heart Circ Physiol 25): H460 - H467
PubMed
CAS
Google Scholar
Hilton R, Eichholtz F (1925) The influence of chemical factors on the coronary circulation. J Physiol (London) 59: 413–425
CAS
Google Scholar
Berne RM, Blackmon JR, Gardner TH (1957) Hypoxemia and coronary blood flow. J Clin Invest 36: 1101–1106
PubMed
CAS
PubMed Central
Google Scholar
Nakamura Y, Takahashi M, Takei F, Matsumura N, Schölkens B, Sasamoto H (1969) The change in pulmonary vascular resistance during acute induced hypoxemia — with special reference to coronary vascular reserve. Cardiologia 54: 91–103
PubMed
CAS
Google Scholar
Vance JP, Parratt JR, Ledingham I McA (1971) The effects of hypoxia on myocardial blood flow and oxygen consumption: negative role of beta adrenoreceptors. Clin Sci 41: 257–273
PubMed
CAS
Google Scholar
Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44: 1–29
PubMed
CAS
Google Scholar
Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 238 (Heart Circ Physiol 7): H716 - H728
PubMed
CAS
Google Scholar
Detar R (1980) Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction. Am J Physiol 238 (Heart Circ Physiol 7): H761 - H769
PubMed
CAS
Google Scholar
Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol (London) 68: 213–237
CAS
Google Scholar
Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317–322
PubMed
CAS
Google Scholar
Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel and seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50: 228–229
CAS
Google Scholar
Richman HG, Wyborny L (1964) Adenine nucleotide degradation in the rabbit heart. Am J Physiol 207: 1139–1145
PubMed
CAS
Google Scholar
Merril GF, Downey HF, Yonekura S, Watanabe N, Jones CE (1988) Adenosine deaminase attenuates regional myocardial hypoxia in the dog. Cardiovasc Res 22: 345–350
Google Scholar
Gewirtz H, Olsson RA, Most AS (1987) Role of adenosine in mediating the coronary vasodilative response to acute hypoxia. Cardiovasc Res 21: 81–89
PubMed
CAS
Google Scholar
Rubio R, Weidmeier VT, Brene RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6: 561–566
PubMed
CAS
Google Scholar
Scott JB, Chen WT, Swindall BT, Dabney JM, Haddy FJ (1979) Evidence from bioassay studies indicating a role for adenosine in cardiac ischemic and hypoxic dilation in the dog. Circ Res 45: 451–459
PubMed
CAS
Google Scholar
Olsson RA (1970) Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 26: 301–306
PubMed
CAS
Google Scholar
Fox AC, Reed GE, Glassman E, Kaltman AJ, Silk BB (1974) Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest 53: 1447–1457
PubMed
CAS
PubMed Central
Google Scholar
Wei HM, Kang YH, Merrill GF (1989) Canine coronary vasodepressor responses to hypoxia are abolished by 8-phenyltheophylline. Am J Physiol 257 (Heart Circ Physiol 26): H1043 — H1048
PubMed
CAS
Google Scholar
Rubanyi G, Paul RJ (1985) Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 56: 1–10
PubMed
CAS
Google Scholar
Kwan YW, Wadsworth RM, Kane KA (1989) Effects of hypoxia on the pharmacological responsiveness of isolated coronary artery rings from the sheep. Br J Pharmacol 96: 849–856
PubMed
CAS
Google Scholar
Rubanyi GM, Vanhoutte PM (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol 364: 45–56
PubMed
CAS
Google Scholar
van Neuten JM, Vanhoutte PM (1980) Effect of Ca++ antagonist lidoflazine on normoxic and anoxic contractions of canine coronary arterial smooth muscle. Eur J Pharmacol 64: 173–176
Google Scholar
Coker SJ, Marshall RJ, Parratt JR, Zeitlin IJ (1981) Does the local myocardial release of prostaglandin E2 or F2alpha contribute to the early consequences of acute myocardial ischaemia? J Mol Cell Cardiol 13: 425–434
PubMed
CAS
Google Scholar
Kleber AG (1984) Extracellular potassium accumulation in acute myocardial ischaemia. J Mol Cell Cardiol 16: 389–394
PubMed
CAS
Google Scholar
Kwan YW, Wadsworth RM, Kane KA (1989) Hypoxia-and endothelium-mediated changes in the pharmacological responsiveness of circumflex coronary artery rings from the sheep. Br J Pharmacol 96: 857–863
PubMed
CAS
Google Scholar
Iqbal A, Vanhoutte PM (1988) Flunarizine inhibits endothelium-dependent hypoxic facilitation in canine coronary arteries through an action on vascular smooth muscle. Br J Pharmacol 95: 789–794
PubMed
CAS
Google Scholar
Raberger G, Schütz W, Kraupp O (1975) Coronary reactive hyperaemia and coronary dilator action of adenosine during normal respiration and hypercapnic acidosis in the dog. Clin Exp Pharmacol Physiol 2: 373–382
CAS
Google Scholar
Case RB, Greenburg H (1976) The response of canine coronary vascular resistance to local alterations in coronary arterial PCO2. Circ Res 39: 558–566
PubMed
CAS
Google Scholar
Neill WA, Hattenhauer M (1975) Impairment of myocardial O2 supply due to hyperventilation. Circulation 52: 854–858
PubMed
CAS
Google Scholar
Shepherd JT, Vanhoutte PM (1975) Skeletal muscle blood flow-neurogenic determinants. In: Zelis R (ed) The peripheral circulations. Grune & Stratton, New York, pp 3–55
Google Scholar
Bachofen M, Gage A, Bachofen H (1971) Vascular response to changes in blood oxygen tension under various blood flow rates. Am J Physiol 220: 1786–1792
PubMed
CAS
Google Scholar
Costin JC, Skinner NS (1970) Effects of systemic hypoxemia on vascular resistance in dog skeletal muscle. Am J Physiol 218: 886–893
PubMed
CAS
Google Scholar
Pelletier CL (1972) Circulatory responses to graded stimulation of carotid chemoreceptors in the dog. Circ Res 31: 431–443
PubMed
CAS
Google Scholar
Shepherd JT (1981) The lungs as receptor sites for cardiovascular regulation. Circulation 63: 1–10
PubMed
CAS
Google Scholar
Heistad DD, Abboud FM, Mark AL, Schmid PG (1972) Impaired reflex vasoconstriction in chronically hypoxemic patients. J Clin Invest 51: 331–337
PubMed
CAS
PubMed Central
Google Scholar
Cain SM, Chapler CK (1980) 02 extraction by canine hindlimb during alpha-adrenergic blockade and hypoxic hypoxia. J Appl Physiol 48: 630–685
Google Scholar
Granger HJ, Goodman AH, Granger DN (1976) Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res 38: 379–385
PubMed
CAS
Google Scholar
Kubes P, Cain SM, Chapler CK (1989) Neural regulation of canine skeletal muscle blood flow during hypoxic hypoxia. Am J Physiol 257 (Heart Circ Physiol 26): H1581 - H1586
PubMed
CAS
Google Scholar
Lahiri S, Delaney RG (1976) The nature of response of simple chemoreceptor fibres of carotid body to changes in arterial PO, and PCO2 — H. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. India: Navchetan, New Delhi, pp 18–26
Google Scholar
Bayliss WM (1902) On the local reaction of the arterial wall to changes of internal pressure. J Physiol (London) 28: 220–231
CAS
Google Scholar
Järhult J, Mellander S (1974) Autoregulation of capillary hydrostatic pressure in skeletal muscle during regional arterial hypo-and hypertension. Acta Physiol Scand 91: 32–41
PubMed
Google Scholar
Lundvall J, Mellander S, Sparks H (1967) Myogenic response to resistance vessels and precapillary sphinters in skeletal muscle during exercise. Acta Physiol Scand 70: 257–268
PubMed
CAS
Google Scholar
Pohost GM, Newell JB, Hamlin NP, Powell WJ Jr (1976) Observations on autoregulation in skeletal muscle: the effects of arterial hypoxia. Cardiovasc Res 10: 405–412
PubMed
CAS
Google Scholar
Sparks HV Jr, Belloni FL (1978) The peripheral circulation: local regulation. Ann Rev Physiol 40: 67–92
CAS
Google Scholar
Scott JB, Rudko M, Radawski D, Haddy ET (1970) Role of osmolarity, K+ H+ Mg++ and O2 in local blood flow regulation. Am J Physiol 218: 338–345
PubMed
CAS
Google Scholar
Morganroth ML, Mohrman DE, Sparks HV (1975) Prolonged vasodilation following fatiguing exercise of dog skeletal muscle. Am J Physiol 229: 38–43
PubMed
CAS
Google Scholar
Dornhorst AC (1963) Hyperaemia induced by exercise and ischaemia. Br Med Bull 19: 137–140
Google Scholar
Duling BR (1978) Oxygen, carbon dioxide and hydrogen ions as local factors causing vasodilation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilation. Karger, Basel, pp 193–199
Google Scholar