Skip to main content

Principal Determinants of Tissue PO2: Clinical Considerations

  • Chapter
Tissue Oxygen Utilization

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 12))

Abstract

The objective of this paper is to discuss a new thesis concerning the sites of resistance to oxygen transport in red muscle in the steady state. Consideration will be given to both convective and diffusive transport [1] and the interaction between pathophysiology and these sites of resistance. Convective oxygen transport makes oxygen from the environment available for diffusive transport to the site of oxygen consumption (\( \dot{V}{{O}_{2}} \)), predominantly mitochondria in red muscle. The spatial distribution of resistances to diffusive O2 transport, the functions of myoglobin (Mb), the reserves of diffusive O2 transport in Mb-containing muscles and the distribution of mitochondria within the muscle determine the principal sites of resistance to diffusive transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Honig CR, Gayeski TEJ, Groebe K (1990) The lung: Scientific foundations, Chapter 5.5.2.4 Myoglobin and 02 gradients (in press)

    Google Scholar 

  2. Federspiel WJ, Popel AS (1986) A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res 32: 164–189

    Article  PubMed  CAS  Google Scholar 

  3. Federspiel WJ, Popel AS (1986) A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res 32: 164–189

    Article  PubMed  CAS  Google Scholar 

  4. Honig CR, Frierson JL, Gayeski TEJ (1989) Anatomical determinants of 02 flux density at coronary capillaries. Am J Physiol 256: H375 — H382

    PubMed  CAS  Google Scholar 

  5. Honig CR, Gayeski TEJ (1989) Precapillary 02 loss and arteriovenous 02 diffusion shunt are below limit of detection in myocardium. Adv Exper Med Biol 247: 591–599

    Google Scholar 

  6. Clark A Jr, Clark PAA (1986) The end-points of the oxygen path: transport resistance in red cells and mitochondria. Adv Exp Med Biol 200: 43–47

    PubMed  Google Scholar 

  7. Clark A Jr, Clark PAA (1986) The end-points of the oxygen path: transport resistance in red cells and mitochondria. Adv Exp Med Biol 200: 43–47

    PubMed  Google Scholar 

  8. Clark A Jr, Clark PAA, Connett RJ, Gayeski TEJ, Honig CR (1987) How large is the drop in PO, between cytosol and mitochondria? Am J Physiol 252: C583–0587

    PubMed  Google Scholar 

  9. Groebe K, Thews G (1986) Theoretical analysis of oxygen supply to contracted skeletal muscle. Adv Exper Med Biol 200: 495–514

    CAS  Google Scholar 

  10. Gayeski TEJ, Honig CR (1986) 02 gradients from sarcolemma to cell interior in a red muscle at maximal VO2. Am J Physiol 251: 789–799

    Google Scholar 

  11. Gayeski TEJ, Honig CR (1988) Intracellular P02 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol 254: H1179 — H1186

    PubMed  CAS  Google Scholar 

  12. Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Ann Rev Physiol 51: 857–878

    Article  CAS  Google Scholar 

  13. Federspiel WJ (1986) A model study of intracellular oxygen gradients in a myoglobincontaining skeletal muscle fiber. Biophys J 49: 857–868

    Article  PubMed  CAS  Google Scholar 

  14. Gayeski TEJ, Connett RJ, Honig CR (1987) Minimum intracellular PO, for maximum cytochrome turnover in red muscle in situ. Am J Physiol 252: H906 — H915

    PubMed  CAS  Google Scholar 

  15. Kreuzer F, Hoofd L (1987) Facilitated diffusion of oxygen and carbon dioxide. In: Farhi L, Tenney SM (eds) Handbook of physiology section 3, The respiratory system, vol IV, gas exchange. Am Physiol Soc

    Google Scholar 

  16. Kreuzer F, Hoofd L (1987) Facilitated diffusion of oxygen and carbon dioxide. In: Farhi L, Tenney SM (eds) Handbook of physiology section 3, The respiratory system, vol IV, gas exchange. Am Physiol Soc

    Google Scholar 

  17. Gayeski TEJ, Federspiel WJ, Honig CR (1988) A graphical analysis of the influence of red cell transit time, carrier-free layer thickness, and intracellular PO, on blood-tissue 02 transport. Adv Exp Med Biol 222: 25–35

    PubMed  CAS  Google Scholar 

  18. Gayeski TEJ, Honig CR (1986) Shallow intracellular 02 gradients and absence of perimitochondrial 02 “wells” in heavily working red muscle. Adv Exp Med Biol 200: 487–494

    PubMed  CAS  Google Scholar 

  19. Whalen WJ (1971) Intracellular PO2 in heart and skeletal muscle. Physiologist 14: 69–82

    PubMed  CAS  Google Scholar 

  20. Coburn RF, Mayers LB (1971) Myoglobin 02 tension determined from measurements of carboxymyoglobin in skeletal muscle. Am J Physiol 220: 66–74

    PubMed  CAS  Google Scholar 

  21. Wilson DF, Erecinska M, Drawn C, Silver IA (1979) The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys 195: 485–493

    Article  PubMed  CAS  Google Scholar 

  22. Connett RJ, Honig CR (1989) Regulation of VO2 in red muscle: Do current biochemical hypotheses fit in vivo data? Am J Physiol 256: R898 — R906

    PubMed  CAS  Google Scholar 

  23. Lund N, Damon DN, Duling BR (1987) Capillary grouping in hamster tibialis anterior muscle: flow patterns and physiological significance. Int J Microcirc Clin Exp 5: 359–372

    PubMed  CAS  Google Scholar 

  24. Honig CR, Odoroff CL, Frierson JL (1982) Active and passive capillary control in red muscle at rest and in exercise. Am J Physiol 243: H196 — H206

    PubMed  CAS  Google Scholar 

  25. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237: H481 — H490

    PubMed  CAS  Google Scholar 

  26. Cole RP (1982) Myoglobin function in exercising skeletal muscle. Science 216: 523–525

    Article  PubMed  CAS  Google Scholar 

  27. Sarelius IH, Duling BR (1982) Direct measurement of microvessel hematocrit, red cell flux, velocity and transit time. Am J Physiol 243: H1018 — H1026

    PubMed  CAS  Google Scholar 

  28. Sarelius IH, Duling BR (1982) Direct measurement of microvessel hematocrit, red cell flux, velocity and transit time. Am J Physiol 243: H1018 — H1026

    PubMed  CAS  Google Scholar 

  29. Wittenberg BA, Wittenberg JB (1985) Oxygen pressure gradients in isolated cardiac myocytes. J Biol Chem 260: 6548–6554

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gayeski, T.E. (1991). Principal Determinants of Tissue PO2: Clinical Considerations. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics