Skip to main content

Biophysical Basis of Hemodynamic Measurements

  • Conference paper
Strategy in Bedside Hemodynamic Monitoring

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 11))

  • 72 Accesses

Abstract

Monitoring in the meaning of observing or checking, especially for special purposes [1], implies transmission of information from a patient under surveillance to an observer, usually a physician or a nurse. This transmission occurs either continuously or at certain intervals. The information contains directly measured signals and data derived from the measured signals, which are usually called estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster’s New Collegiate Dictionary (1980) Merriam Company, Springfield, Mass, USA

    Google Scholar 

  2. Hamilton WF, Moore JW, Kinsman JM, Spurling RG (1932) Studies on the circulation. IV. Further analysis of the injection method, and of changes in hemodynamics under physiological and pathological conditions. Am J Physiol 99: 534–551

    CAS  Google Scholar 

  3. Jansen JRC, Schreuder JJ, Bogaard JM, Rooyen W van, Versprille A (1981) The thermodilution technique for the measurement of cardiac output during artificial ventilation. J Appl Physiol 51: 584–591

    PubMed  CAS  Google Scholar 

  4. Jansen JRC, Versprille A (1986) Improvement of cardiac output estimation of the thermodilution method during mechanical ventilation. Intensive Care Med 12: 71–79

    Article  PubMed  CAS  Google Scholar 

  5. Armengol J, Man GCW, Balsys AJ (1981) Effects of respiratory cycle on cardiac output measurements: reproducibility of data enhanced by timing the thermodilution injections in dogs. Crit Care Med 9: 852–854

    Article  PubMed  CAS  Google Scholar 

  6. Snyder JV, Powner DJ (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10: 677–682

    Article  Google Scholar 

  7. Okamoto K, Komatsu T, Kumar V, Sanchala V, Kubal K, Bhalodia R, Shibutani K (1986) Effects of intermittent positive-pressure ventilation on cardiac output measurements by thermodilution. Crit Care Med 14: 977–980

    Article  PubMed  CAS  Google Scholar 

  8. Versprille A (1984) Pulmonary vascular resistance. A meaningless variable. Intensive Care Med 10: 213–215

    PubMed  CAS  Google Scholar 

  9. Harris P, Heath D (1986) The human pulmonary circulation, 3rd edn. Churchill Livingstone, Edinburgh London Melbourne New York, pp 78–93

    Google Scholar 

  10. Milic-Emili J, Mead J, Turner JM (1964) Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19: 212–216

    PubMed  CAS  Google Scholar 

  11. Schreuder JJ, Jansen JRC, Bogaard JM, Versprille A (1982) Hemodynamic effects of positive end-expiratory pressure applied as a ramp. J Appl Physiol 53: 1239–1247

    PubMed  CAS  Google Scholar 

  12. Lenfant C, Howell BJ (1960) Cardiovascular adjustments in dogs during continuous pressure breathing. J Appl Physiol 15: 425–428

    PubMed  CAS  Google Scholar 

  13. Benza GC, Mantero O, Marzegalli M, Morbelli E, Rampulla C, Morphurgo M (1975) Simultaneous right and left heart catheterization and transmural pressures in chronic obstructive lung disease. Progr Resp Res 9: 55–62

    Google Scholar 

  14. Cassidy SS, Robertson CM, Pierce AK, Johnson RL. Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44: 743–750

    Google Scholar 

  15. Lozman J, Powers SR, Older T, et al (1974) Correlation of pulmonary wedge and left atrial pressures. Arch Surg 109: 270–277

    Article  PubMed  CAS  Google Scholar 

  16. Reichel G, Islam MS, Lanser K, Marcic I (1975) Relation between pulmonary artery, wedge, capillary and left atrial pressure in obstructive lung disease. Progr Resp Res 9: 41–48

    Google Scholar 

  17. Scharf SM, Ingram RH (1977) Effects of decreasing lung compliance with oleic acid on the cardiovascular response to PEEP. Am J Physiol (Heart Circ Physiol 2) 233: H635–641

    CAS  Google Scholar 

  18. Zarins CK, Virgilio RW, Smith DE, Peters RM (1977) The effect of vascular volume on positive end-expiratory pressure induced cardiac output depression and wedge-left atrial pressure discrepancy. J Surg Res 23: 348–360

    Article  PubMed  CAS  Google Scholar 

  19. Pfeiffer U, Birj M, Bluemel G (1979) Ein vollautomatischer Thermodilutions-Injektor. Biomedizinische Technik 24: 60–61

    Article  Google Scholar 

  20. Saadjian A, Quercy JE, Torresani J (1976) Cardiac output measurement by thermodilution. Med Progr Technol 3: 161–167

    CAS  Google Scholar 

  21. Hoffman JIE, Guz A, Charlier AA, Wilcken DEL (1965) Stroke volume in conscious dogs: effect of respiration, posture, and vascular occlusion. J Appl Physiol 20: 865–877

    PubMed  CAS  Google Scholar 

  22. Versprille A, Jansen JRC, Frietman RC, Hulsmann AR, Klauw MM v.d. Negative effect of insufflation on cardiac output and pulmonary blood volume. Submitted to Acta Anaesthesiologica Scandinavica

    Google Scholar 

  23. Versprille A, Jansen JRC, Schreuder JJ (1982) Dynamic aspects of the interaction between airway pressure and the circulation. In: Prakash O (ed) Applied physiology in clinical respiratory care. Nijhoff, The Hague, pp 447–463

    Google Scholar 

  24. Versprille A, Jansen JRC, Schreuder JJ (1982) Hemodynamic effects of PEEP and superimposed insufflation during CPPV. Proceedings of the Third International Symposium on Intensive Care and Emergency Medicine, Brussels, pp 182–187

    Google Scholar 

  25. Wetterer E, Kenner Th (1968) Grundlagen der Dynamik des Arterienpulses. Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Sobin S, Fung YC, Tremer H (1970) Morphometric basis of the sheet flow concept of the pulmonary alveolar microcirculation in the cat. Circ Res 26: 397–414

    PubMed  CAS  Google Scholar 

  27. Fung YC, Sobin S (1972) Pulmonary alveolar blood flow. Circ Res 30: 470–490

    PubMed  CAS  Google Scholar 

  28. Maseri A, Caldini P, Harward P, Joshi RC, Permutt S, Zierler KL (1972) Determinants of pulmonary vascular volume: recruitment versus distensibility. Circ Res 31: 218–228

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Versprille, A., Jansen, J.R.C. (1991). Biophysical Basis of Hemodynamic Measurements. In: Dhainaut, JF., Payen, D. (eds) Strategy in Bedside Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84167-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84167-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52471-7

  • Online ISBN: 978-3-642-84167-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics