Skip to main content

Principles Governing the Activity of E. coli Promoters

  • Chapter
Nucleic Acids and Molecular Biology 4

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 4))

Abstract

The control of transcription initiation is central among the mechanisms which regulate gene activity. In E. coli for example the rate of RNA synthesis directed by various promoters can differ by orders of magnitude. Moreover, the activity of an individual promoter may be modulated over a wide range by negatively and/or positively acting regulatory proteins. What are the principles which determine promoter activity and how can this activity be modified by regulatory proteins?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brunner M (1988) Dimensionalität diffusionsgetriebener Wechselwirkungen DNA bindender Proteine mit ihren spezifischen Erkennungssequenzen. PhD-thesis Universität Heidelberg, FRG

    Google Scholar 

  • Brunner M, Bujard H (1987) Promoter recognition and promoter strength in the Escherichia coli system. EMBO J 6: 3139–3144

    PubMed  CAS  Google Scholar 

  • Bujard H (1980) The interaction of E. coli RNA polymerase with promoters. TIBS 5: 274–278

    CAS  Google Scholar 

  • Bujard H, Deuschle U, Kammerer W, Gentz R, Bannwarth W, Stüber D (1985) Promoters of the E. coli system: in vivo strength and the contribution of elements in the transcribed region. In: Calendar R, Gold L (eds) UCLA symposium on sequence specificity in transcription and translation. A. R. Liss, Inc., New York

    Google Scholar 

  • De Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 80: 21–25

    Article  PubMed  Google Scholar 

  • De Crombrugghe B, Busby S, Buc H (1984) Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831–838

    Google Scholar 

  • Deuschle U, Kammer er W, Gentz R, Bujard H (1986) Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J 5: 2987–2994

    PubMed  CAS  Google Scholar 

  • Flashner Y, Gralla Jay D (1988) Dual mechanism of repression at a distance in the lac operon. Proc Natl Acad Sci USA 85: 8968–8972

    Article  PubMed  CAS  Google Scholar 

  • Gentz R, Bujard H (1985) Promoters recognized by Escherichia coli RNA polymerase selected by function: Highly efficient promoters from bacteriophage T5. J Bacteriol 164: 70–77

    PubMed  CAS  Google Scholar 

  • Graña D, Gardella T, Susskind MM (1988) The effects of mutations in the ant promoter of phage P22 depend on context. Genetics 120: 319–327

    PubMed  Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11: 2237–2255

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Inouye M (1985) Up-promoter mutations in the lpp gene of Escherichia coli. Nucleic Acids Res 13: 3101–3110

    Article  PubMed  CAS  Google Scholar 

  • Kammerer W (1986) Wechselwirkung zwischen E. coli RNA Polymerase und Promotoren: Funktion spezifischer Sequenzen in der Promotorregion. PhD-thesis Universität Heidelberg, FRG

    Google Scholar 

  • Kammerer W, Deuschle U, Gentz R, Bujard H (1986) Functional dissection of Escherichia coli promoters: information in the transcribed region is involved in late steps of the overall process. EMBO J 5: 2995–3000

    PubMed  CAS  Google Scholar 

  • Knaus R, Bujard H (1988) PL of coliphage lambda: an alternative solution for an efficient promoter. EMBO J 7: 2919–2923

    PubMed  CAS  Google Scholar 

  • Krummel B, Chamberlin MJ (1988) E. coli RNA polymerase abortive initiation and elongation complex formation: Roles of the promoter and early transcribed sequences. J Cell Biochem, UCLA Symp. on Mol. and Cell. Biol., p 12D: 140

    Google Scholar 

  • Lanzer M (1988) Kompetition von Repressor und RNA-Polymerase um DNA-Bindungsorte. PhD-thesis Universität Heidelberg, FRG

    Google Scholar 

  • Lanzer M, Bujard H (1988) Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci USA 85: 8973–8977

    Article  PubMed  CAS  Google Scholar 

  • Malan TP, Kolb A, Buc H, McClure WR (1984) Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. J Mol Biol 180: 881–909

    Article  PubMed  CAS  Google Scholar 

  • McClure WR (1980) Rate limiting steps in RNA chain initiation. Proc Natl Acad Sci USA 77: 5364–5368

    Google Scholar 

  • Miller J, Ippen K, Scaife J, Beckwith JR (1968) The promoter operator region of the lac operon of Escherichia coli J Mol Biol 38: 413–425

    CAS  Google Scholar 

  • Mulligan ME, Hawley DK, Entriken R, McClure WR (1984) Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res 12: 789–800

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1986) A genetic switch. Blackwell Scientific Publications & Cell Press, Cambridge, USA

    Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353

    Article  PubMed  CAS  Google Scholar 

  • Sarmientos P, Cashel M (1983) Carbon starvation and growth rate dependent regulation of the Escherichia coli ribosomal RNA promoters: Differential control of dual promoters. Proc Natl Acad Sci USA 80: 7010–7013

    Google Scholar 

  • Sasse-Dwight S, Gralla JD (1988) Probing the Escherichia coli glnALG upstream activating mechanism in vivo. Proc Natl Acad Sci USA 85: 8934–8938

    Article  PubMed  CAS  Google Scholar 

  • Stefano JE, Gralla J (1979) Lac UV5 transcription in vitro. Rate limitation subsequent to formation of an RNA polymerase-DNA complex. Biochemistry 18: 1063–1067

    Google Scholar 

  • Straney DC, Crothers DM (1987) A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter. J Mol Biol 193: 267–278

    Article  PubMed  CAS  Google Scholar 

  • Youderian P, Bouvier S, Susskind MM (1982) Sequence determinants of promoter activity. Cell 30: 843–853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knaus, R., Bujard, H. (1990). Principles Governing the Activity of E. coli Promoters. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology 4. Nucleic Acids and Molecular Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84150-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84150-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84152-1

  • Online ISBN: 978-3-642-84150-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics