Molecular Cluster Calculations of the Electronic Structure of the (111) Surface of CaF2

  • E. Westin
  • A. Rosén
  • E. Matthias
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 19)


Molecular cluster calculations within the Local Density Approximation have been performed to analyze the electronic structure of stoichiometric and different non-stoichiometric (111) surfaces of CaF2. The effect of the surrounding crystal ions, i.e. the long range electrostatic potential, have been included by a Fourier summation. Calculations for clusters representing the bulk and stoichiometric surfaces give similar results while calculations for non-stoichiometric surfaces show the existence of occupied surface states in the upper half of the bandgap. Existence of these types of occupied surface states are supported by experimental EELS studies on CaF2 as well as by observation of laser induced emission of ions and electrons from surfaces of BaF2.


Local Density Approximation Ionic Crystal Molecular Cluster Surface Cluster Swedish Natural Science Research Council 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.H. Stulen, M.L.Knotek, Desorption Induced by Electronic Transitions, DIET III, Springer Series in Surface Science 13, Springer-Verlag, Berlin 1988 and references therein to earlier DIET workshopsCrossRefGoogle Scholar
  2. [2]
    G.A. Somorjai Chemistry in two dimensions, Cornell U.P., 1981Google Scholar
  3. [3]
    F.J. Himpsel, U.O. Karlsson, F.R. McFeely, J.F. Morar, D. Rieger, A. Taleb-Ibrahimi and J.A. Yarmoff, Mat. Sci. Eng., B1 (1988) 9 and references thereinGoogle Scholar
  4. [4]
    Y.R. Shen, Principles of Non-linear Optics, Wiley, New York 1984Google Scholar
  5. [5]
    J. Reif, P. Tepper, E. Matthias, E. Westin and A. Rosén, Appl. Phys. B46 (1988) 131Google Scholar
  6. [6]
    T.F. Heinz, FJ. Himpsel, E. Palange and E. Burstein, Phys. Rev.lett. 63 (1989) 644CrossRefGoogle Scholar
  7. [7]
    A. Rosén, E. Westin, E. Matthias, H.B. Nielsen, J. Reif., Physica Scripta T23, (1988) 184CrossRefGoogle Scholar
  8. [8]
    K. Saiki, Y. Sato, Y. Ando and A. Koma, Surf. Sci. 192 (1987) 1CrossRefGoogle Scholar
  9. [9]
    Xia Shangda, Gou Changxin, Lin Libin, D.E. Ellis, Phys. Rev. B35 (1987) 7671Google Scholar
  10. [10]
    D.E. Parry, Surf. Sci.49 (1975) 433; 54 (1976) 195CrossRefGoogle Scholar
  11. [11]
    E. Westin, to be published.Google Scholar
  12. [12]
    M. Abramowitz, LA. Stegun, Handbook of Mathematical Functions, Dover, New York 1965Google Scholar
  13. [13]
    J.P. Dahl, J. Avery, Local density Approximations in Quantum Chemistry and Solid State Physics, Plenum Press, New York 1984Google Scholar
  14. [14]
    B. Delley, D.E. Ellis, J. Chem. Phys. 76 (1982) 1949CrossRefGoogle Scholar
  15. [15]
    D.E. Ellis, G.A. Benesh, E. Byrom, Phys. Rev. B20 (1979) 1198Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • E. Westin
    • 1
  • A. Rosén
    • 1
  • E. Matthias
    • 2
  1. 1.Department of PhysicsChalmers University of Technology and University of GöteborgGöteborgnSweden
  2. 2.Fachbereich PhysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations