Spiral Vortex Behavior in Transition Region and Separation of Three-Dimensional Boundary Layers on Spheres Rotating in Axial Flow

  • R. Kobayashi
  • T. Arai
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The experiment shows that the transfer from the laminar to turbulent separation occurs at a definite value of the rotational speed ratio S for a given Reynolds number Re. The critical condition of the transition is determined in a relation between the critical Reynolds number based on the momentum thickness and the rotational speed ratio. The measurement is also made for the angular velocity of spiral vortices in the transitional region relative to the rotating sphere surface.


Reynolds Number Axial Flow Laminar Boundary Layer Critical Reynolds Number Momentum Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wimmer, M.: Viscous flow and instabilities near rotating bodies. Prog. Aerospace Sci. 25 (1988) 43–103.ADSCrossRefGoogle Scholar
  2. 2.
    Reed, H.L.; Saric, W.S.: Stability of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 21 (1989) 235–285.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Kobayashi, R.; Kohama, Y.; Arai, T.; Ukaku, M.: The boundary-layer transition on rotating cone in axial flow with free-stream turbulence. JSME Intern. J. 30 (1987) 423–429.CrossRefGoogle Scholar
  4. 4.
    Sawatzki, 0.: Das Strömungsfeld um eine rotierende Kugel. Acta Mech. 9 (1970) 159–214.MATHCrossRefGoogle Scholar
  5. 5.
    Kohama, Y.; Kobayashi, R.: Boundary-layer transition and the behaviour of spiral vortices on rotating spheres. J. Fluid Mech. 137 (1983) 153–164.ADSCrossRefGoogle Scholar
  6. 6.
    Luthander, S.; Rydberg, A.: Experimentelle Untersuchung über den Luftwiderstand bei einer um eine mit der Windrichtung paralelle Achse rotierenden Kugel. Phys. Z. 36 (1935) 552–558.Google Scholar
  7. 7.
    Kobayashi, R.; Arai, T.; Nakajima, M.: Boundary layer transition and separation on spheres rotating in axial flow. Exp. Thermal and Fluid Sci. 1 (1988) 99–104.ADSCrossRefGoogle Scholar
  8. 8.
    Kobayashi, R.; Kohama, Y.; Takamadate, C.: Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mech. 35 (1980) 71–82.ADSMATHCrossRefGoogle Scholar
  9. 9.
    Kohama, Y.: Study on boundary layer transition of a rotating disk. Acta Mech. 50 (1984) 193–199.ADSCrossRefGoogle Scholar
  10. 10.
    Kobayashi, R.; Kohama, Y.: Spiral vortices in boundary layer transition on a rotating cone. Kozlov, V. V.(ed.) Laminar-Turbulent Transition, IUTAM Symp., Novosibirsk, Springer-Verlag 1984, 573–580.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. Kobayashi
    • 1
  • T. Arai
    • 1
  1. 1.Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations