Secondary Instabilities of Three-Dimensional Inflectional Velocity Profiles Resulting from Longitudinal Vorticity Elements in Boundary Layers

  • A. S. Sabry
  • X. Yu
  • J. T. C. Liu
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


We consider the problem of “high frequency” secondary instability of nonlinearly developed and strongly modified Gortler vortices initiated at finite Gortler and wave numbers in the amplified region. Local linear stability analyses of relevant cross-sectional planes show that secondary instabilities are more correlated with the vertical vorticity and that they would originate in two regions: (1) in the outer region of the boundary layer at the “shoulders” on either side of the peak region and (2) in the lower regions at about y+≈30, on either side but more concentrated about the peak region. For the same frequency and strcamwise wave number found in experiments, the sinuous type disturbance would prevail over the varicose; disturbances in lower region near the wall have the largest amplification rate.


Peak Region Secondary Instability Longitudinal Vortex Vertical Vorticity Concave Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aihara, Y.; Koyama, H.: Nonlinear development and secondary instability of Gortler vortices. In Stability Mech. Continua ( F. M. Schroeder, ed.), Berlin, Springer-Verlag 1982, pp. 345–352.CrossRefGoogle Scholar
  2. 2.
    Ito, A.: Breakdown structure of longitudinal vortices along a concave wall. J. Japan Aero. Space Soc. 33 (1985) 166–173.CrossRefGoogle Scholar
  3. 3.
    Swearingen, J. D.; Blackwelder, R.: The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mcch. 182 (1987) 255–290.ADSCrossRefGoogle Scholar
  4. 4.
    Peerhossaini, H.; Wesfreid, J. E.: On the inner structure of streamwise Gortler rolls. Int. J. Heat Fluid Flow 9 (1988) 12–18.CrossRefGoogle Scholar
  5. 5.
    Prandtl, L.: The mechanics of viscous fluids. In Aerodynamic Theory 3 (1935) 34.CrossRefGoogle Scholar
  6. 6.
    Floryan, J. M.; Saric, W. S.: Stability of Gorticr vortices in boundary layers. AIAA J. 20 (1982) 316–324.MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Hall, P.: The linear development of Gorticr vortices in growing boundary layers. J. Fluid Mech. 130 (1983) 41–58.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Sabry, A. S.; Liu, J. T. C.: Nonlinear development of Gortler vortices and the generation of high shear layers in the boundary layer. In Symp. to Honor C. C. Lin ( D. J. Benney, F. H. Shu, C. Yuan, eds.), Singapore, World Scientific 1988, pp. 175–183.Google Scholar
  9. 9.
    Sabry, A. S.: Numerical Computation of the nonlinear evolution of Gortler vortices. Brown University, Division of Engineering, Ph.D. Thesis 1988.Google Scholar
  10. 10.
    Sabry, A. S.; Liu, J. T. C.: Longitudinal vorticity elements in boundary layers (to be published, 1989 ).Google Scholar
  11. 11.
    Jones, C. A.: The transition to wavy Taylor vortices. J. Fluid Mcch. 157 (1985) 135–162.ADSCrossRefGoogle Scholar
  12. 12.
    Betchov, R.; Criminale, Jr., W. O.: Stability of Parallel Flows, New York, Academic Press 1967.Google Scholar
  13. 13.
    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.: A spectral collocation solution to the compressible stability eigenvalue problem. NASA Tech. Paper 2858, 1988.Google Scholar
  14. 14.
    Aihara, Y.; Koyama, H.: Secondary instability of Gortler vortices: Formation of periodic three-dimensional coherent structure. Trans. Japan Soc. Aero. Space Sci. 24 (1981) 78–94.ADSGoogle Scholar
  15. 15.
    Hall, P.; Seddougui, S.: On the onset of three-dimensionality and time-dependence in the Gortler vortices. J. Fluid Mcch. 204 (1989) 405–420.MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Bippes, H.: Experimental study of laminar turbulent transition of a concave wall in a parallel flow. NASA TM No. 75243.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  • A. S. Sabry
    • 1
  • X. Yu
    • 1
  • J. T. C. Liu
    • 1
  1. 1.The Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations