Skip to main content

Significance of Heterotrophic Nanoflagellates and Ciliates in Large Lakes: Evidence from Lake Constance

  • Chapter
Book cover Large Lakes

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

This paper presents a case study on the dynamics of heterotrophic nanoflagellates (HNF) and ciliates in Lake Constance illustrating the relationships between bacteria and protozoa in a large lake. The results will be discussed in the context of our present knowledge of the existence and functioning of a highly dynamic microbial food web (“microbial loop”) in pelagic systems.

In Lake Constance, bacterial production is mainly cropped by grazing of HNF which occur in concentrations of 102–104 cells ml−1. HNF less than 10 µm in size ingest between 10 and 100 bacteria HNF−1h−1. The size spectrum shows pronounced seasonal variations. Although the smallest HNF (<2 µm) dominate in numbers, their contribution to total HNF biomass is negligible. A biomass peak at 3 to 4 µm is obvious throughout most of the year. In epipelagic waters, HNF typically double every 20–50 hours. Thus, growth rates of HNF are only slightly lower than those of pelagic bacteria.

HNF are grazed upon by nano- and microciliates. Total ciliate concentrations range from 1–100 cells ml−1, and the orders Prostomatida and Oligotrichida numerically dominate the population. Although these ciliates are known to feed on small algae, their ability to efficiently crop bacteria is under debate. Further experimental evidence is needed in order to estimate the impact of pelagic ciliate grazing on bacteria and autotrophic picoplankton in lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, E, Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., and Thingstad, E. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Beaver, J.R. and Crisman, T.L. 1982. The trophic response of ciliated protozoa in freshwater lakes. Limnology and Oceanography 26: 822–830.

    Google Scholar 

  • Beaver, J.R. and Crisman, T.L. 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111–136.

    Article  Google Scholar 

  • Bird, D.F. and Kalif, J. 1986. Bacterial grazing by planktonic algae. Science 231: 493–495.

    Article  PubMed  CAS  Google Scholar 

  • Bird, D.F. and Kalif, J. 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnology and Oceanography 32: 277–284.

    Article  CAS  Google Scholar 

  • Bloem, J. and Bär-Gilissen, J.M.B. 1989. Bacterial activity and protozoan grazing potential in a stratified lake. Limnology and Oceanography 34: 297–307.

    Article  Google Scholar 

  • Bloem, J., Bär-Gilissen, M.J.B., and Cappenberg, T.E. 1986. Fixation, counting, and manipulation of heterotrophic and nanoflagellates. Applied and Environmental Microbiology 52: 1266–1272.

    PubMed  CAS  Google Scholar 

  • Bloem, J., Ellenbroek, F.M., Bär-Gilissen, M.J.B., and Cappenberg, T.E. 1989. Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation. Applied and Environmental Microbiology 55: 1787–1795.

    PubMed  CAS  Google Scholar 

  • Boraas, M.E., Nealson, K., Remsen, C.C., and Seale, D.B. 1987. Phagotrophic flagellates in Lake Michigan, in 30th Conference on Great Lakes Research, IAGLR, Ann Arbor, May 11–14, 1987 (mimeo).

    Google Scholar 

  • Caron, D.A., Pick, F.R., and Lean, D.R.S. 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. Journal of Phycology 21: 171–175.

    Article  Google Scholar 

  • Corliss, J.O. 1979. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. 2nd ed. Pergamon Press, London, 455 pp.

    Google Scholar 

  • Craig, S.R. 1984. Productivity of algal picoplankton in a small meromictic lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 351–354.

    Google Scholar 

  • Estep, K.W., Davis, P.G., Keller, M.D., and Sieburth, J.M.N. 1986. How important are oceanic algal nanoflagellates in bacterivory? Limnology and Oceanography 31: 646–650.

    Article  Google Scholar 

  • Fahnenstiel, G.L., Sicko-Goad, L., Scavia, D., and Stoermer, E.F. 1986. Importance of picoplankton in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 43: 235–240.

    Article  Google Scholar 

  • Fenchel, T. 1980a. Suspension feeding in ciliated protozoa. Functional response and particle size selection. Microbial Ecology 6: 1–11.

    Article  Google Scholar 

  • Fenchel, T. 1980b. Suspension feeding in ciliated protozoa. Feeding rates and their ecological significance. Microbial Ecology 6: 13–25.

    Article  Google Scholar 

  • Fenchel, T. 1982a. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Marine Ecology Progress Series 8: 211–223.

    Article  Google Scholar 

  • Fenchel, T. 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Marine Ecology Progress Series 8: 225–231.

    Article  Google Scholar 

  • Fenchel, T. 1982c. Ecology of heterotrophic flagellates. IV. Quantitative occurrence and importance as bacterial consumers. Marine Ecology Progress Series 9: 35–42.

    Article  Google Scholar 

  • Fenchel, T. 1987. Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists. Science Tech. Publ., Madison, WI, 197 pp.

    Google Scholar 

  • Foissner, W., and Wilbert, N. 1979. Morphologie, Infraciliatur und Ökologie der limnischen Tintinnina: Tintinnidium fluviatile (Stein), Tintinnidium pusillum (Entz), Tintinnopsis cylindrata (Daday) und Codonella cratera (Leidy) (Ciliophora, Polyhymenophora). Journal of Protozoology 26: 90–103.

    Google Scholar 

  • Foissner, W, Oleksiv, I., and Müller, H. 1990. Morphology and infraciliature of some ciliates (Protozoa: Ciliophora) from stagnant waters. Archiv für Protistenkunde (in press).

    Google Scholar 

  • Gilde, H. 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. Journal of Plankton Research 8: 795–810.

    Article  Google Scholar 

  • Gilde, H. 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance. Hydrobiologia 159: 63–73.

    Article  Google Scholar 

  • Kahl, A. 1930–1935. Urtiere oder Protozoa. I: Wimpertiere oder Ciliata. In Dahl, F. (editor). Die Tierwelt Deutschlands. G. Fischer, Jena. parts 18, 21, 25, 30, pp. 1–886.

    Google Scholar 

  • Landry, M.R. and Hasset, R.P. 1982. Estimating the grazing impact of marine micro zooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Levine, N.D. et al. 1980. A newly revised classification of the Protozoa. Journal of Protozoology 27: 37–58.

    PubMed  CAS  Google Scholar 

  • Müller, H. 1989. The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microbial Ecology 18: (in press).

    Google Scholar 

  • Müller, H., Geller, W, and Schöne, A. 1990. Pelagic ciliates in Lake Constance: Comparison of epilimnion and hypolimnion. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: (in press).

    Google Scholar 

  • Nagata, T. 1988. Bacterial production and their contribution to the grazer food chain of Lake Biwa. This volume.

    Google Scholar 

  • Pace, M.L. 1985. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography 31: 45–55.

    Article  Google Scholar 

  • Pomeroy, L.R. 1984. Significance of microorganisms in carbon and energy flow in marine ecosystems. In Klug, M.J., and Reddy, C.A. (ed.), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington, D.C., p. 405–411.

    Google Scholar 

  • Porter, K.R. and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Porter, K.G., Sherr, E.B., Sherr, B.F., Pace, M., and Sanders, R.W. 1985. Protozoa in planktonic food webs. Journal of Protozoology 32: 409–415.

    Google Scholar 

  • Rassoulzadegan, F. and Sheldon, R.W. 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnology and Oceanography 31: 1010–1021.

    Article  Google Scholar 

  • Rivier, A., Brownlee, D.C., Sheldon, R.W, and Rassoulzadegan, F. 1986. Growth of microzooplankton: a comparative study of bacterivorous zooflagellates and ciliates. Marine and Microbial Food Webs 1: 51–60.

    Google Scholar 

  • Sanders, R.W. and Porter, K.G. 1986. Use of metabolic inhibitors to estimate protozoo-plankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Applied and Environmental Microbiology 52: 101–107.

    PubMed  CAS  Google Scholar 

  • Scavia, D. and Laird, G. 1987. Lake Michigan bacteria dynamics and production, in 30th Conference on Great Lakes Research, IAGLR, Ann Arbor, May 11–14, 1987 (mimeo).

    Google Scholar 

  • Seale, D.B., Bleakley, B., Boraas, M.E., and Nealson, K. 1987. Use of a bioluminescent bacterium to obtain clearance rates for Lake Michigan phagotrophic flagellates, in 30th Conference on Great Lakes Research, IAGLR, Ann Arbor, May 11–14, 1987 (mimeo).

    Google Scholar 

  • Sheldon, R.W., Nival, P., and Rassoulzadegan, F. 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnology and Oceanography 31: 184–188.

    Article  Google Scholar 

  • Sheldon, R.W. and Rassoulzadegan, F. 1987. A method for measuring plankton production by particle counting. Marine Microbial Food Webs 2: 29–44.

    Google Scholar 

  • Sherr, B.F. and Sherr, E.B. 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In Klug, M.J., and Reddy, C.A. (ed.), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington, D.C., p. 412–423.

    Google Scholar 

  • Sherr, B.F., Sherr, E.B., Andrew, T.L., Fallon, R.D., and Newell, S.Y. 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Marine Ecology Progress Series 32: 169–179.

    Article  CAS  Google Scholar 

  • Sherr, B.E, Sherr, E.B., and Newell, S.Y. 1984. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. Journal of Plankton Research 6: 195–202.

    Article  Google Scholar 

  • Sherr, E.B. and Sherr, B.F. 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Article  Google Scholar 

  • Sherr, E.B., Sherr, B.F., and Paffenhöfer, G.-A. 1986. Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs? Marine Microbial Food Webs 1: 61–80.

    Google Scholar 

  • Simon, M. 1988. Growth characteristics of small and large free-living and attached bacteria in Lake Constance. Microbial Ecology 15: 151–163.

    Article  Google Scholar 

  • Skogstad, A., Granskog, L., and Klaveness, D. 1987. Growth of freshwater ciliates offered planktonic algae as food. Journal of Plankton Research 9: 503–512.

    Article  Google Scholar 

  • Stoecker, D.K., Cucci, T.L., Hulburth, E.M., and Yentsch, C.M. 1986. Selective feeding by Balanion sp., Ciliata, Balanoidae, on phytoplankton that best support its growth. Journal of Experimental Marine Biology and Ecology 95: 113–130.

    Article  Google Scholar 

  • Taylor, W.D. and Heynen, M.L. 1987. Seasonal and Vertical Distribution of Ciliophora in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 44: 2185–2191.

    Article  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen der IVL 9: 1–38.

    Google Scholar 

  • Weisse, T. 1988. Dynamics of autotrophic picoplankton in Lake Constance. Journal of Plankton Research 10: 1179–1188.

    Article  Google Scholar 

  • Weisse, T. 1989a. The microbial loop in the Red Sea: dynamics of pelagic bacteria and heterotrophic nanoflagellates. Marine Ecology Progress Series 55: 241–250.

    Article  Google Scholar 

  • Weisse, T. 1989b. Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance (FRG). Hydrobiologia Dev. Hydrobiol. (in press).

    Google Scholar 

  • Weisse, T. and Schweizer, A. 1990. Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verhandlungen der internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: (in press).

    Google Scholar 

  • Williams, P.J.IeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschungen, Sonderheft 5: 1–28.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weisse, T., Müller, H. (1990). Significance of Heterotrophic Nanoflagellates and Ciliates in Large Lakes: Evidence from Lake Constance. In: Tilzer, M.M., Serruya, C. (eds) Large Lakes. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84077-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84077-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84079-1

  • Online ISBN: 978-3-642-84077-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics