Large Lakes pp 459-474 | Cite as

Seasonal Succession of Rotifers in Large Lakes

  • Hans-Rainer Pauli
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)


Details of rotifer succession are known for lakes from the cold regions to the tropics and for trophic levels covering the complete spectrum of trophy. Because of its relatively small size, rotifer standing stock is usually of minor importance. Their relative significance within the energy flow of lake ecosystems, however, can be substantial and ranges from 3% to 96% of total zooplankton productivity. Temperature, food supply, competition with filter-feeding cladocerans, and predation by raptorial copepods are the main factors controlling seasonal occurrence, density, and succession of rotifers. In general, the winter rotifer communities consist of few (<5) species while the maximum number of species (>20) occurs in summer. Number of individuals per unit volume may fluctuate within three orders of magnitude. The common temporal patterns of abundance of rotifer communities in temperate lakes are: (1) low density during winter when both temperature and food levels are low, (2) exponential growth in spring when temperature and food levels increase, (3) subsequent breakdown of the rotifer community, and (4) wide fluctuations in abundance during summer and autumn. This overall temporal pattern is the result of the underlying dynamics of individual species differing either in their specific requirements for food and temperature or in their susceptibility to predators.


Seasonal Succession Rotifer Species Rotifer Population Rotifer Community Zooplankton Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adalsteinsson, H. 1979. Zooplankton and its relation to available food in Lake Myvatn. Oikos 32: 162–194.CrossRefGoogle Scholar
  2. Alimov, F.A., Boullion, V.V., Finogenova, N.P., Ivanova, M.B., Kuzmitskaya, N.K., Nikukina, V.N., Ozeretskovskaya, N.G., and Zharowa, T.V. 1972. Biological productivity of Lakes Krivoe and Krugloe. In: Z. Kajak and A. Hillbricht-Ilkowska (eds.), Productivity Problems of Freshwaters. PWN Polish Scientific Publishers, Warsaw, p. 383–404.Google Scholar
  3. Auerbach, M., Märker, W, and Schmalz, J. 1924. Hydrographisch-biologische Bodensee-Untersuchungen. I. Ergebnisse der Jahre 1920–122. Archiv für Hydrobiologie, Suppl. 3: 597–738.Google Scholar
  4. Auerbach, M., Märker, W, and Schmalz, J. 1926. Hydrographisch-biologische Bodensee-Untersuchungen. II. Ergebnisse der Jahre 1923 und 1924 und Zusammenfassung 1920–1924. Verhandlungen des naturwissenschaftlichen Vereins Karlsruhe 30: 1–128.Google Scholar
  5. Balvay, G. 1984. Les rotifères. In: CIPEL: Le Léman, Synthèse 1957–1982. Commission internationale pour la protection des eaux du Léman contre la pollution, Lausanne, p. 304–313.Google Scholar
  6. Balvay, G., and Laurent, M. 1981. Les rotifères du Léman. Schweizerische Zeitschrift für Hydrologie. 43: 126–139.CrossRefGoogle Scholar
  7. Berner-Fankhauser, H. 1983. Abundance, dynamics and succession of planktonic rotifers in Lake Biel, Switzerland. Hydrobiologia 104: 349–352.CrossRefGoogle Scholar
  8. Berner-Fankhauser, H. 1986. Populationsdynamik der Plankton-Rotatorien im Bielersee 1981/82. Dissertation, Universität Bern, 88 pp.Google Scholar
  9. Bogdan, K.G. and Gilbert, J.J. 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer-cell approach. Oecologia (Berlin) 72: 331–340.CrossRefGoogle Scholar
  10. Buikema, A.L., Jr., Miller, J.D., and Yongue, W.H., Jr. 1978. Effects of algae and protozoans on the dynamics of Polyarthra vulgaris. Verhandlungen der Internationalen Vereinigung für Limnologie 20: 2395–2399.Google Scholar
  11. Carlin, B. 1943. Die Planktonrotatorien des Motalaström. Meddelandsen Lunds Universitet Limnol. Inst. 5: 1–255.Google Scholar
  12. Daget, P. 1980. Le nombre de diversité de Hill, un concept unifacteur dans la théorie de la diversité écologique. Acta Oecologica/Oecologia Generalis 1: 51–70.Google Scholar
  13. DeBernardi, R., Giussani, G., and Origgi, I. 1983. Analisi del popolamento zooplanctonico del Lago Maggiore nel quadriennio 1979–1982. In: Raporti su Studi e Ricerche Condotti nel Bacino del Lago Maggiore/Campagna 1982. Istituto Italiano di Idrobiologia, Pallanza, p. 145–192.Google Scholar
  14. Dumont, H.J. 1977. Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie Beihefte/Ergebnisse der Limnologie 8: 98–122.Google Scholar
  15. Gauch, H.G. and Whittaker, R.H. 1981. Hierarchical classification of community data. Journal of Ecology 69: 537–557.CrossRefGoogle Scholar
  16. Geller, W. 1989. The energy budget of two sympatric Daphnia species in Lake Constance: Productivity and energy residence times. Oecologia (Berlin) 78: 242–250.CrossRefGoogle Scholar
  17. Gilbert, J.J. and Stemberger, R.S. 1985. Control of Keratella populations by interference competition from Daphnia. Limnology and Oceanography 30: 180–188.CrossRefGoogle Scholar
  18. Gilbert, J.J. and Williamson, C.E. 1978. Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37: 13–22.CrossRefGoogle Scholar
  19. Halbach, U. 1970. Einfluß der Temperatur auf die Populations dynamik des planktischen Rädertieres Brachionus calyciflorus Pallas. Oecologia 4: 176–207.CrossRefGoogle Scholar
  20. Halbach, U. 1973. Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature. In: Wieser, W. (ed.), Effects of Temperature on Ectothermic Organisms. Springer-Verlag, Berlin, p. 217–228.CrossRefGoogle Scholar
  21. Herzig, A. 1983. Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104: 237–246.CrossRefGoogle Scholar
  22. Hill, M.O. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 45: 427–432.CrossRefGoogle Scholar
  23. Hutchinson, G.E. 1967. A Treatise on Limnology Vol. 2. John Wiley & Sons, Inc., New York, 1115 pp.Google Scholar
  24. Karabin, A. 1978. The predatory pressure of pelagic cyclopoid copepods Mesocyclops on small zooplankton. Ekologia Polska 26: 241–257.Google Scholar
  25. King, C.E. 1972. Adaption of rotifers to seasonal variation. Ecology 53: 408–418.CrossRefGoogle Scholar
  26. Hillbricht-Ilkowska, A., Gliwicz, Z., and Spodniewska, I. 1966. Zooplankton production and some trophic dependencies in the pelagic zone of two masurian lakes. Verhandlungen der Internationalen Vereinigung für Limnologie 16: 432–440.Google Scholar
  27. Larsson, P. 1978. The life cycle dynamics and production of zooplankton in Ovre Heim-dalsvatn. Holarctic Ecology 1: 162–218.Google Scholar
  28. Legendre, L. and Legendre, P. 1983. Numerical Ecology. Elsevier Scientific Publishing Company, Amsterdam, 419 pp.Google Scholar
  29. Lewis, W.M., Jr. 1979. Zooplankton Community Analysis: Studies on a Tropical System. Springer-Verlag, New York, 163 pp.Google Scholar
  30. Makarevicz, J.C. and Likens, G.E. 1979. Structure and function of the zooplankton community of Mirror Lake, New Hampshire. Ecological Monographs 49 (1): 109–127.CrossRefGoogle Scholar
  31. Margalef, R. 1969. Diversity and stability: a practical proposal and a model of interdependence. In: Diversity and stability in ecological systems. Brookhaven Symposium in Biology 22: 25–37.Google Scholar
  32. Margalef, R. 1983. Limnologie. Ediciones Omega, S.A., Barcelona, 1010 pp.Google Scholar
  33. Matveeva, L.K. 1983. Community structure of planktonic rotifers in a mesotrophic lake. Hydrobiologia 104: 353–356.CrossRefGoogle Scholar
  34. May, L. 1983. Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia 104: 311–315.CrossRefGoogle Scholar
  35. Miracle, M.R. 1974. Niche structure in freshwater zooplankton: a principal components approach. Ecology 55: 1306–1317.CrossRefGoogle Scholar
  36. Miracle, M.R. 1977. Migration, patchiness, and distribution in time and space of planktonic rotifers. Archiv für Hydrobiologie Beihefte/Ergebnisse der Limnologie 8: 19–37.Google Scholar
  37. Motyka, J., Dobrzanski, B., and Zawazki, S. 1950. Preliminary studies on meadows in the south-east of the province Lublin. Ann. Univ. Mariae Curie-Sklodowska Sect, E. Agricultura 5: 367–447.Google Scholar
  38. Nauwerk, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symbolae Botanicae Upsalienses 17: 1–163.Google Scholar
  39. Neill, W.E. 1984. Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia. Oecologia (Berlin) 61: 175–181.CrossRefGoogle Scholar
  40. Orcutt, J.D. and Pace, M.L. 1984. Seasonal dynamics of rotifer and crustacean zoo-plankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques. Hydrobiologia 119: 73–80.CrossRefGoogle Scholar
  41. Pejler, B. 1957. Taxonomical and ecological studies on planktonic Rotatoria from northern Swedish Lapland. Kunglica Svenska Vetenskapsakademiens Handlingar 6: 1–68.Google Scholar
  42. Pourriot, R. 1965. Recherches sur l’ecologie des Rotifères. Vie et Milieu Suppl. 21: 1–224.Google Scholar
  43. Pourriot, R., Deluzarches, M. 1971. Recherches sur la biologie des Rotifères. II. Influence de la température sur la durée du développement embryonnaire et post-embryonnaire. Annales de Limnologie 7: 25–52.CrossRefGoogle Scholar
  44. Pourriot, R. 1977. Food and feeding habits of Rotifers. Archiv für Hydrobiologie Beihefte/Ergebnisse der Limnologie 8: 243–260.Google Scholar
  45. Rey, J. and Capblancq, J. 1975. Dynamique des populations et production du zooplancton du lac de Port-Bielh (Pyrénées Centrales). Annales de Limnologie 11: 157–172.CrossRefGoogle Scholar
  46. Ronneberger, D. and Kasprzak, P. 1985. The zooplankton population. In: Casper, S.J. (ed.), Lake Stechl in: A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, The Hague, p. 243–259.Google Scholar
  47. Ruttner-Kolisko, A. 1972. Der Einfluß von Temperatur und Salzgehalt des Mediums auf Stoffwechsel-und Vermehrungsintensität von Brachionus plicatilis (Rotatoria). Verhandlungen der Deutschen Zoologischen Gesellschaft 65: 89–95.Google Scholar
  48. Ruttner-Kolisko, A. 1975. The influence of fluctuating temperature on plankton rotifers. A graphical model based on life data of Hexarthra fennica from Neusiedlersee, Austria. Symposia Biologica Hungarica 15: 197–204.Google Scholar
  49. Ruttner-Kolisko, A. 1978. Influence of fluctuating temperature on plankton rotifers. II. Laboratory experiments. Verhandlungen der Internationalen Vereinigung für Limnologie 20: 2400–2405.Google Scholar
  50. Schindler, D.W. 1972. Production of phytoplankton and zooplankton in Canadian Shield Lakes. In: Z. Kajak and A. Hillbricht-Ilkowska (eds.), Productivity Problems of Freshwaters. PWN Polish Scientific Publishers Warsaw, p. 383–404.Google Scholar
  51. Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423, 623–656.Google Scholar
  52. Stabel, H.-H. 1985. Mechanisms controlling the sedimentation sequence of various elements in prealpine lakes. In: Stumm W. (ed.), Chemical Processes in Lakes. Wiley, New York, p. 143–167.Google Scholar
  53. Starkweather, P.L. and Bogdan, K.G. 1980. Detrital feeding in natural zooplankton communities: discrimination between live and dead algal foods. Hydrobiologia 73: 83–85.CrossRefGoogle Scholar
  54. Stemberger, R.S. 1974. Temporal and spatial distributions of planktonic rotifers in Milwaukee harbor and adjacent Lake Michigan. Proceedings 17th Congress of Great Lakes Research: 120–134Google Scholar
  55. Stemberger, R.S., Evans, M.S. 1984. Rotifer seasonal succession and copepod predation in Lake Michigan. Journal of Great Lakes Research 10: 417–428.CrossRefGoogle Scholar
  56. Tilzer, M.M. and Beese, B. 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweizerische Zeitschrift für Hydrologie 50: 1–39.CrossRefGoogle Scholar
  57. Vareschi, E. and Jacobs, J. 1985. The ecology of Lake Nakuru. VI. Synopsis of production and energy flow Oecologia (Berlin) 65: 412–424.CrossRefGoogle Scholar
  58. Walz, N. 1986. Wie werden Rotatorienpopulationen reguliert? Laufener Seminarbeiträge 2 /86: 80–90.Google Scholar
  59. Walz, N. 1987. Stoffumsatz und Kinetik von Regulationsprozessen bei ZooplanktonPopulationen. Habilitationsschrift, Ludwig-Maximilians-Universität München, 225 pp.Google Scholar
  60. Walz, N., Elster, H.-J., and Mezger, M. 1987. The development of the rotifer community structure in Lake Constance during its eutrophication. Archiv für Hydrobiologie 74: 452–487.Google Scholar
  61. Wappis, E. 1980. Zur Populationsökologie des Zooplanktons des Ossiachersees. Dissertation, Universität Graz, 168 pp.Google Scholar
  62. Williamson, C.E. 1983. Invertebrate predation on planktonic rotifers. Hydrobiologia 104: 385–396.CrossRefGoogle Scholar
  63. Winberg, G.G., Babitsky, V.A., Gavrilov, S.I., Gladky, G.V., Zakharenkov, I.S., Kovalevskaya, R.Z., Mikheyeva, T.M., Nevyadomskaya, P.S., Ostapenya, A.P., Petrovich, P.G., Potaenko, J.S., and Yakushko, O.F. 1972. Biological productivity of different types of lakes. In: Z. Kajak and A. Hillbricht-Ilkowska (eds.), Productivity Problems of Freshwaters. PWN Polish Scientific Publishers Warsaw, p. 383–404.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hans-Rainer Pauli

There are no affiliations available

Personalised recommendations