Large Lakes pp 265-287 | Cite as

Biological Transfer and Sedimentation of Chernobyl Radionuclides in Lake Constance

  • G. Lindner
  • M. Becker
  • R. Eckmann
  • P. Frenzel
  • J. Kleiner
  • D. Petermann-Seyboldt
  • W. Pfeiffer
  • U. Wahl
  • E. Recknagel
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

Considering the input of Chernobyl radionuclides into Lake Constance on April 30, 1986, as the starting point of an unplanned radiotracer experiment, we followed the fate of five long-lived, gamma-emitting radionuclides (137Cs, 106Ru, 125Sb, 110mAg, and 144Ce) in order to obtain information about their scavenging and sedimentation properties, and their transfer into and within the food-web. In particular, we studied the uptake and excretion by fish of 137Cs. With respect to the transfer of 137Cs into fish, we also performed comparative investigations in the Schreckensee, a small shallow lake in the vicinity of Lake Constance.

The chemical speciation and the physical state of the radionuclides determine the efficiency of their scavenging and sedimentation, resulting in an enrichment of the above long-lived radionuclides in the sediments in comparison to 137Cs. The uptake of 137Cs by planktivorous fish was considerably more rapid than by other species. For whitefish, slightly higher concentration factors and somewhat lower effective retention times than those reported in the literature were obtained. The inventory of dissolved 137Cs in the water reflected the differences between Lake Constance and the Schreckensee with respect to their morphometry; enrichment of this isotope was considerably greater in the shallow Schreckensee than in deep Lake Constance, due to less dilution within the water column. The observed marked differences in the radioactive contamination of the fish in both lakes can be explained by the food-web structures.

With the advent of Chernobyl radionuclides in the sediments of Lake Constance in 1986, a new geochronological marker was established, allowing tracer studies of transport processes around the sediment-water interface that have a superior time resolution compared to studies using radionuclides from nuclear weapons testing fallout.

Keywords

Sludge Arsenic Sedimentation Calcite Vanadium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M.O., Asmodé, J.F., Foster, P., and Van’t dack, L. 1981. Determination of antimony (III), antimony (V) and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Anal. Chem. 53: 1766–1771.CrossRefGoogle Scholar
  2. Bode, M., Theile, F. W, and Metzner, R. 1987. Fallout des KKW-Unfalls Tschernobyl, Dekontamination und Partikel-Analyse. Tagungsbericht der Jahrestagung Kerntechnik 1987 in Karlsruhe. Deutsches Atomforum, Bonn, p. 279–282.Google Scholar
  3. Broda, R. 1987. Gamma spectroscopy analysis of hot particles from the Chernobyl fallout. Acta Physica Polonica B 18: 935–950.Google Scholar
  4. Buesseler, K.O., Livingston, H.D., Honjo, S., Hay, B.J., Manganini, S.J., Degens, E., Ittekkot, V., Izdar, E., and Konuk, T., 1987. Chernobyl radionuclides in a Black Sea sediment trap. Nature 329: 825–828.PubMedCrossRefGoogle Scholar
  5. Cuddihy, R.G., Finch, G.L., Newton, G.J., Hahn, F.F., Mewhinney, J.A., Rothenberg, S.J., and Powers, D.A. 1989. Characteristics of radioactive particles released from the Chernobyl nuclear reactors. Environ. Sci. Technol. 23: 89–95.CrossRefGoogle Scholar
  6. Czarnecki, J., Cartier, E, Honegger, P., and Zurkinden, A. 1987. Bodenverstrahlung in der Schweiz aufgrund des Reaktorunfalles in Chernobyl. In: Proceedings of the Symposium “Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 93109.Google Scholar
  7. Devell, L., Tovedal, H., Bergström, U., Appelgren, A., Chyssler, J., and Andersson, L. 1986. Initial observations of fallout from reactor accident at Chernobyl. Nature 321: 192–193.CrossRefGoogle Scholar
  8. Devell, L. 1987. Nuclide composition of Chernobyl hot particles. Report Studsvik (NP-87/119), Nyköping, 1987.Google Scholar
  9. Dominik, J., Mangini, A., and Müller, G. 1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology 28: 653–677.CrossRefGoogle Scholar
  10. Eadie, B.J. and Robbins, J.A. 1987. The role of particulate matter in the movement of contaminants in the Great Lakes. In: Hites, R.A. and Eisenreich, S.J. (eds.). Sources and Fates of Aquatic Pollutants. Advances in Chemistry Series, No. 216, American Chemical Society, Washington, D.C., p. 319–364.CrossRefGoogle Scholar
  11. Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG). 1988. Das Verhalten von Radionukliden in natürlichen Gewässern. Abschätzung der Gefährdung des Trinkwassers in der Schweiz im Falle eines radioaktiven Ausfalls. (unpublished report), Dübendorf 116 p.Google Scholar
  12. Elster, H.J. 1977. Der Bodensee-Bedrohung und Sanierungsmöglichkeiten eines Ökosystems. Naturwissenschaften 64: 207–215.CrossRefGoogle Scholar
  13. Fowler, S.W., Buat-Menard, P., Yokojama, Y., Ballestra, S., Holm, E., and Van Nguyen, H. 1987. Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 329: 56–68.PubMedCrossRefGoogle Scholar
  14. Geissler, A., Kissling, S., Niebuhr, J., Stroh, B., Thomas, H., Wilhelm, C., and Zibold, G. 1989. Barsche und Hechte noch erheblich belastet. Fisch und Fang 2 /1989: 4041.Google Scholar
  15. Haberer, K. 1969. Radionuklide im Wasser. Thiemig, München.Google Scholar
  16. Hakanson, L., Andersson, T., Neumann, G., Nilsson, A., and Notter, M. 1988. Cesium-137 in Perch in Lakes from Northern Sweden after Chernobyl-Present Situation, Relationships, Trends. Report 3497. Statens naturvardsverk, Solna, 136 pp.Google Scholar
  17. Hohenemser, C., Deicher, M., Ernst, A., Hofsäss, H., Lindner, G., and Recknagel, E. 1986a. Chernobyl: an early report. Environment 28: 6–43.CrossRefGoogle Scholar
  18. Hohenemser, C., Deicher, M., Hofsäss, H., Lindner, G., Recknagel, E., and Budnick, J.I. 1986b. Agricultural impact of Chernobyl: a warning. Nature 321: 817.PubMedCrossRefGoogle Scholar
  19. Internationale Gewässerschutzkommission für den Bodensee. 1987. Die Entwicklung der Radioaktivität im Bodensee nach dem Unfall von Tschernobyl. Report No. 36, Langen-argen, 75 pp.Google Scholar
  20. International Nuclear Safety Advisory Group (INSAG). 1986. Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident. Safety series No. 75-INSAG1. International Atomic Energy Agency, Vienna.Google Scholar
  21. Jones, G.D., Forsyth, P.D., and Appleby, O.G. 1986. Observation of l’omAg in Chernobyl fallout. Nature 322: 312.CrossRefGoogle Scholar
  22. Kempe, S. and Nies, H. 1987. Chernobyl nuclide record from a North Sea sediment trap. Nature 329: 828–831.PubMedCrossRefGoogle Scholar
  23. Kissling, S., Niebuhr, J., Stroh, B., and Zibold, G. 1988. Radioaktive Kontamination von Fischen im Landkreis Ravensburg. Fisch und Fang 8 /1988: 12.Google Scholar
  24. Kolehmainen, S.E. 1969. White Oak Lakes Studies. ORNL 4446, Oak Ridge.Google Scholar
  25. König, L.A., Schüttelkopf, H., Erat, S., Fessler, H., Hempelmann, S., Maurer, K., Pimpl, M., and Radziwill, A. 1986. Der Reaktorunfall von Tschernobyl-Meßergebnisse des Kernforschungszentrums Karlsruhe. Kernforschungszentrum Karlsruhe GmbH (KfK 4115). Karlsruhe, 86. p.Google Scholar
  26. Lindner, G., Deicher, M., Eckmann, R., Hofsäss, H., Jahn, S.G., Müller, W., Petermann, D., Pfeiffer, W, Teufel, S., Wahl, U., Winter, S., and Recknagel, E. 1987. Überregionale Aspekte der Tschernobyl-Radioaktivität im Bodensee-Gebiet. In: Proceedings of the Symposium ‘Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 312–322.Google Scholar
  27. Lindner, G., Brüll, B., Athanassenas, K., Steffen, W, and Kissling, S. 1988a. Gelöste Cäsium-Radioaktivität im Schreckensee. In: Jahresbericht Nukleare Festkörperphysik Konstanz 1988. Universität Konstanz, p. 107–108.Google Scholar
  28. Lindner, G., Jahn, S., Pfeiffer, W, Petermann-Seyboldt, D., Athanassenas, K., Brüll, P., Kühn, H., Eckmann, R., and Becker, M. 1988b. Cäsium-Radioaktivität in Fischen aus dem Bodensee. In: Jahresbericht Nukleare Festkörperphysik Konstanz 1988. Universität Konstanz, p. 105–106.Google Scholar
  29. Lindner, G., Pfeiffer, W, Petermann-Seyboldt, D., Recknagel, E., Kleiner, J., and Stabel, H.H. 1988c. Die Abscheidung radioaktiver Isotope aus Tschemobyl im Bodensee durch Sinkstoffe. In: Jahresbericht Nukleare Festkörperphysik Konstanz 1988. Universität Konstanz, p. 98–100.Google Scholar
  30. Lindner, G., Steffen, W, Pfeiffer, W, Petermann-Seyboldt, D., Brüll, P., Kühn, H., Recknagel, E., and Frenzel, P. 1988d. Radioisotope aus Tschernobyl in den Sedimenten des Bodensees. In: Jahresbericht Nukleare Festkörperphysik Konstanz 1988. Universität Konstanz, p. 101–104.Google Scholar
  31. Lindner, G. and Recknagel, E. 1988. Tschernobyl-Auswirkungen auf die Bodensee-Region. Thorbecke, Sigmaringen, 126 pp.Google Scholar
  32. Lindner, G., Pfeiffer, W., Wahl, U., Kleiner, J., Stabel, H.H., Frenzel, P., Robbins, J.A., Giovanoli, F., Lenhard, A., and Recknagel, E. 1989. Sedimentation of longlived radionuclides in Lake Constance. In: Proceedings of the International Conference on Heavy Metals in the Environment, 1989, Geneva ( Vernet, J.P., ed), CEP Consultants Ltd, Edinburgh, p. 449–542.Google Scholar
  33. Mäckle, H., Zimmermann, U., and Stabel, H.H. 1987. GWF-Wasser und Abwasser 128: 544–550.Google Scholar
  34. Middelburg, J.J., Hoede, D., Van der Sloot, H., Van der Weijden, C.H., and Wijkstra, J. 1988. Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochim. et Cosmochim. Acta 52: 2871–2878.CrossRefGoogle Scholar
  35. National Council on Radiation Protection and Measurements (NCRP). 1985. Radiological assessment: Predicting the transport, bioaccumulation and uptake by man of radionuclides released to the environment. NCRP Report No. 76. Bethesda, p. 136–156.Google Scholar
  36. Persson, Ch., Rohde, H., and De Geer, L.E. 1987. The Chernobyl accident-a meteorological analysis of how radionuclides reached and were deposited in Sweden. Ambio 16: 20–31.Google Scholar
  37. Petermann, D., Jahn, S.G., Pfeiffer, W, Lindner, G., and Recknagel, E. 1987a. Cäsium-Akkumulation im Schreckensee. In: Jahresbericht Nukleare Festkörperphysik Konstanz 1987. Universität Konstanz, p. 133–134.Google Scholar
  38. Petermann, D., Jahn, S.G., Pfeiffer, W, Lindner, G., and Recknagel, E. 1987b. Cäsium in der Nahrungskette des Bodensees. In: Jahresbericht Nukleare Festköperphysik Konstanz 1987. Universität Konstanz, p. 131–132.Google Scholar
  39. Petersen, Jr., R.C., Landner, L., and Blanck, H. 1986. Assessment of the impact of the Chernobyl reactor accident on the biota of Swedish streams and lakes. Ambio 15: 327–331.Google Scholar
  40. Poston, T.M. and Klopfer, D.C. 1988. Concentration factors used in the assessment of radiation dose to consumers of fish: A review of 27 radionuclides. Health Physics 55: 751–766.PubMedCrossRefGoogle Scholar
  41. Prout, W.E., Russell, E.R., and Groh, H.J. 1965. Ion exchange absorption of cesium by potassium hexacyanocobalt(II)ferrat(II). Journal of Inorganic Nuclear Chemistry 27: 473–479.CrossRefGoogle Scholar
  42. Raunemaa, T., Lehtinen, S., Saari, H., and Kulmala, M. 1987.2–10µm sized hot particles in Chernobyl fallout to Finland. J. Aerosol. Sci. 18: 693–696.Google Scholar
  43. Robbins, J.A. 1982. Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos. Hydrobiologia 92: 611–622.Google Scholar
  44. Robbins, J.A. and Edgington, D.N. 1975. Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs. Geochim. Cosmochim. Acta 39: 285–304.CrossRefGoogle Scholar
  45. Santschi, P.E, Bollhalder, S., Farrenkothen, K., Lueck, A., Weber, C., Hermann, A., and Schuepbach, M.R. 1987a. Chemische Speziierung und Mobilität der Nuklide des Tschernobyl-Fallouts in der Umwelt. In: Proceedings of the Symposium ‘Radioaktivitätmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 132–141.Google Scholar
  46. Santschi, P.H., Bollhalder, S., Camani, M., Farrenkothen, K., Görlich, W, Haesler, S., Heiz, H., Lueck, A., Schuler, Ch., Sturm, M., Völkle, H., Weber, C., and Zingg, S. 1987b. Radionuklide des Tschernobyl-Fallouts in natürlichen Gewässern: Auswasch-, Verdünnungs-, Eliminierungs-und Anreicherungsprozesse. In: Proceedings of the Symposium “Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wis-senschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 323–338.Google Scholar
  47. Santschi, P.H., Bollhalder, S., Farrenkothen, K., Lueck, A., Weber, C., and Zingg, S. 1987c. Messung der atmosphärischen Deposition von Tschernobyl-Radionukliden (Gesamt-und Trockendeposition) im Raume Dübendorf ZH. In: Proceedings of the Symposium “Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 176–187.Google Scholar
  48. Santschi, P.H., Bollhalder, S., Farrenkothen, K., Lueck, A., Zingg, S., and Sturm, M. 1988. Chernobyl radionuclides in the environment: Tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes. Environ. Sci. Technol. 22: 510–516.CrossRefGoogle Scholar
  49. Schubert, P. and Behrend, U. 1987. Investigations of radioactive particles from the Chernobyl fall-out. Radiochimica Acta 41: 149–155.Google Scholar
  50. Sigg, L. 1985. Metal transfer mechanisms in lakes, the role of settling particles. In: Stumm, W. (ed.), Chemical Processes in Lakes. Wiley, New York, p. 283–310.Google Scholar
  51. Stabel, H.H. 1985. Mechanisms controlling the sedimentation sequence of various elements in prealpine lakes. In: Stumm, W. (ed.), Chemical Processes in Lakes. Wiley, New York, p. 143–168.Google Scholar
  52. Thomann, R.V. 1981. Equilibrium model of fate of microcontaminants in diverse aquatic food chains. Canadian Journal of Fishery and Aquatic Sciences 38: 280–296.CrossRefGoogle Scholar
  53. Turner, D.R., Whitfield, M., and Dickson, A.G. 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochimica Cosmochimica Acta 45: 855–881.CrossRefGoogle Scholar
  54. Van Dam, H. 1986. Silver from Chernobyl. Nature 324: 216.PubMedCrossRefGoogle Scholar
  55. Van der Veen, J., van der Wijk, A., Mook, W.G., and de Meijer, R.J. 1986. Core fragments in Chernobyl fallout. Nature 323: 399–400.Google Scholar
  56. von Gunten, H.R., Sturm, M., Erten, H.N., Rössler, E., and Wegmüller, E, 1987. Sedimentation rates in the central Lake Constance determined with Pb-210 and Cs-137. Schweiz. Z. Hydrol. 49: 275–285.CrossRefGoogle Scholar
  57. Wahl, U. 1987. Transportmechanismen radioaktiver Isotope aus dem Tschernobyl-Fallout. Thesis, 108 p.Google Scholar
  58. Wahl, U., Lindner, G., and Recknagel, E. 1989. Radioaktive Partikel im Tschernobyl-Fallout. In: Köhnlein, W., Traut, H., and Fischer, N. (eds.), Die Wirkung niedriger Strahlendosen—biologische und medizinische Aspekte. Springer, Berlin-Heidelberg, p. 165–176.Google Scholar
  59. Weiss, W, Stockburger, H., Sartorius, H., Sittkus, A., Rath, K.H., Loosli, H., Völkle, H., and Rozanski, K. 1987. Der Einfluß von Transport-, Mischungs-und Depositionsvorgängen auf die Aktivitätskonzentration gas-und aerosolförmiger Radionuklide der bodennahen Luft in Europa. In: Proceedings of the Symposium “Radioaktivitätsmessungen in der Schweiz nach Tschernobyl und ihre wissenschaftliche Interpretation, 1986, Bern. Bundesamt für Gesundheitswesen, Bern, p. 32–53.Google Scholar
  60. Zintz, K. 1986. Fischereiliche Nutzung von Stillgewässern in Naturschutzgebieten. Verlag Josef Markgraf, Langen, 531 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. Lindner
  • M. Becker
  • R. Eckmann
  • P. Frenzel
  • J. Kleiner
  • D. Petermann-Seyboldt
  • W. Pfeiffer
  • U. Wahl
  • E. Recknagel

There are no affiliations available

Personalised recommendations