Skip to main content

Seasonal and Regional Variation in the Pelagial and its Relationship to the Life History Cycle of Krill

  • Conference paper
Antarctic Ecosystems

Summary

The earlier concept of Antarctic pelagic seasonality has changed drastically. We now know that the characteristic pelagic community resembles the oligotrophic communities of warm, nutrient-depleted waters. Results of recent sediment trap moorings show that the Antarctic oceanic pelagial behaves as a highly efficient retention system as losses due to sinking particles are exceptionally low. We show that the distinction into “new” and “regenerating” type pelagic systems only applies to restricted regions experiencing sizeable blooms where spring sedimentation pulses have been recorded. Apparently, community biomass is built up by channelling of nitrate into the recycling pool whereby balance between auto- and heterotrophs must be maintained, presumably within time scales of weeks. Interannual variability is likely to be much less pronounced in this type of buffered pelagic system.

In vast areas of the Southern Ocean, algal biomass is low but that of grazers comparatively high. We argue that Antarctic zooplankton, particularly the dominant copepods, are efficiently geared to the pelagic system overlying the deep ocean and maintain sizeable, stable stocks that undergo minor winter decline. The same is true for krill (Euphausia superba) but this animal is large enough to exploit the Antarctic pelagial in an unique way. It retreats to the ice undersurface during the long winter and feeds with high efficiency on plankton concentrations following ice melt. Apparently, krill has geared its life cycle to oceanic circulation patterns, including that of the ice, in a way that maximizes seasonal and regional exploitation of food resources. Adaptation to the rugged ice undersurface is probably the most important factor enabling maintenance of an uniquely large monospecific stock of planktivores in a low productive ocean. The concept of ice as a hostile habitat must be revised; rather than posing a problem for survival, it provides the answer to the age-old riddle of high animal biomass in an icy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anonymous (1985) Sea ice climatic atlas: vol I Antarctic. Naval Oceanography Command Detachment, Asheville, 131 pp

    Google Scholar 

  • Atkinson A, Peck JM (1988) A summer-winter comparison of zooplankton in the oceanic area around South Georgia. Polar Biol 8:463–473

    Article  Google Scholar 

  • Azam F, Beers JR, Campbell L, Carlucci AF, Holm-Hansen O, Reid FMH, Karl DM (1979) Occurrence and metabolic activity of organisms under the Ross Ice Shelf, Antarctica, at Station J9. Science 203:451–453

    Article  PubMed  CAS  Google Scholar 

  • Barry JP (1988) Hydrographic patterns in McMurdo Sound, Antarctica and their relationship to local benthic communities. Polar Biol 8:377–391

    Article  Google Scholar 

  • Berman MS, McVey A, Ettershank G (1989) Age determination of Antarctic krill using fluorescence and image analysis of size. Polar Biol 9:267–271

    Article  Google Scholar 

  • Bodungen B von (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica — implications from sediment trap collections. Polar Biol 6:153–160

    Article  Google Scholar 

  • Bodungen B von, Fischer G, Nöthig E-M, Wefer G (1987) Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica. In: Degens ET, Honjo S, Izdar E (eds) Particle flux in the ocean. Mitteilungen aus dem Geologisch-Palaeontologischen Institut der Universität Hamburg, SCOPE UNEP, Sonderband 62:243–257

    Google Scholar 

  • Bodungen B von, Nöthig E-M, Sui Q (1988) New production of phytoplankton and sedimentation during summer 1985 in the southeastern Weddell-Sea. J Comp Biochem Physiol 90 B:475–487

    Google Scholar 

  • Bodungen B von, Smetacek VS, Tilzer MM, Zeitzschel B (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep-Sea Res 33:177–194

    Article  Google Scholar 

  • Bölter J, Dawson R (1982) Heterotrophic utilization of biochemical compounds in Antarctic waters. Neth J Sea Res 16:315–332

    Article  Google Scholar 

  • Boyd CM, Heyraud M, Boyd CN (1984) Feeding of the Antarctic krill Euphausia superba. J Crustacean Biol 4, Spec No 1:123–141

    Google Scholar 

  • Braarud T (1935) The “Øst” expedition to the Denmark Strait 1929: 2. The phytoplankton and its conditions of growth. Hvalradets Sgkr 10:1–171

    Google Scholar 

  • Brandini FP, Kutner MBB (1987) Phytoplankton and nutrient distributions off the northern South Shetland Islands (summer 1984 — BIOMASS/SIBEX). La Mer 25:93–103

    CAS  Google Scholar 

  • Brinton E, Shulenberger E, Wormuth J, Antezana T (1981) Net sampling of plankton and krill in the Scotia Sea, January–March 1981. Antarct J U S 16:160–161

    Google Scholar 

  • Bröckel K von (1981) The importance of nanoplankton within the pelagic Antarctic ecosystem. Kieler Meeresforsch 5:61–67

    Google Scholar 

  • Brophy JE, Carlson DJ (1989) Production of biologically refractory dissolved organic carbon by natural seawater microbial populations. Deep-Sea Res 36:497–507

    Article  CAS  Google Scholar 

  • Carey AG (1985) Marine ice fauna: Arctic. In: Horner RA (ed) Sea ice biota. CRC Press, Inc, Florida, pp 173–190

    Google Scholar 

  • Collos I, Slawyk G (1986) 14-C and 15-N uptake by marine phytoplankton, IV. Uptake ratios and the contribution of nitrate to the productivity of Antarctic waters (Indian Ocean sector). Deep-Sea Res 33:1039–1051

    Article  CAS  Google Scholar 

  • Daly KL, Macaulay MC (1988) Abundance and distribution of krill in the ice edge zone of the Weddell Sea, austral spring 1983. Deep-Sea Res 35:21–42

    Article  Google Scholar 

  • Deuser WG, Ross EH, Anderson RF (1981) Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res 28:495–505

    Article  CAS  Google Scholar 

  • El-Sayed SZ (1984) Productivity of the Antarctic waters — a reappraisal. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Lecture notes on coastal and estuarine studies, vol 8, Springer, Berlin Heidelberg New York, pp 19–34

    Google Scholar 

  • El-Sayed SZ (1988) The BIOMASS program. Oceanus 31:75–79

    Google Scholar 

  • El-Sayed SZ, Mandelli EF (1965) Primary production and standing crop of phytoplankton in the Weddell Sea and Drake Passage. In: Llano GA (ed) Biology of the Antarctic seas II. Antarct Res Ser 5:87–106

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Article  Google Scholar 

  • Fischer G, Fütterer D, Gersone R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Foxton P (1956) The distribution of the standing crop of zooplankton in the Southern Ocean. Discovery Rep 28:191–236

    Google Scholar 

  • Foxton P (1964) Seasonal variations in the plankton of Antarctic waters. In: Carrick R, Holgate MW, Prevost J (eds) Biologie Antarctique. Hermann, Paris, pp 311–318

    Google Scholar 

  • Fransz HG (1988) Vernal abundance, structure and development of epipelagic copepod populations of the eastern Weddell Sea (Antarctica). Polar Biol 9:107–114

    Article  Google Scholar 

  • Fukuchi M, Hattori H, Sasaki H, Hoshiai T (1988) A phytoplankton bloom and associated processes observed with a long-term moored system in Antarctic waters. Mar Ecol Prog Ser 45:279–288

    Article  Google Scholar 

  • Garrison DL, Ackley SF, Buck KR (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365

    Article  CAS  Google Scholar 

  • Garrison DL, Sullivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. Bioscience 36:243–250

    Article  Google Scholar 

  • Gieskes WWC, Veth C, Woehrmann A, Graefe M (1987) Secchi disc visibility world record shattered. EOS Transac 9:123

    Article  Google Scholar 

  • Gifford DM, Dagg MJ (1987) Consumption of ciliate micro-zooplankton by Neocalanus plumchrus in the subarctic North Pacific Ocean. (Abstr) Eos 68:1705

    Google Scholar 

  • Hamner WM, Hamner PP, Obst BS, Carleton JH (1989) Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limnol Oceanogr 34:451–456

    Article  Google Scholar 

  • Hart TJ (1934) On the phytoplankton of the southwest Atlantic and the Bellinghausen Sea. Discovery Rep 8:1–268

    Google Scholar 

  • Hart TJ (1942) Phytoplankton periodicity in Antarctic surface waters. Discovery Rep 21:261–356

    Google Scholar 

  • Hasle GR (1969) An analysis of the phytoplankton of the Pacific Southern Ocean: abundance, composition and distribution during the Brategg Expedition, 1947–48. Hvalradets Sgkr 52:1–168

    Google Scholar 

  • Hayes PK, Whitacker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20° and 70° W. Polar Biol 3:153–165

    Article  CAS  Google Scholar 

  • Hempel G (1985) Antarctic marine food webs. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 266–270

    Google Scholar 

  • Hempel I (1983) Studies in eggs and larvae of Euphausia superba and Euphausia crystallorophias in the Atlantic sector of the Southern Ocean. Rep Pol Res (Suppl) 4:30–46

    Google Scholar 

  • Hewes CD, Holm-Hansen O, Sakshaug E (1985) Alternate carbon pathways at lower trophic levels in the Antarctic food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 277–283

    Google Scholar 

  • Heywood RB, Priddle J (1987) Retention of phytoplankton by an eddy. Cont Shelf Res 7:937–955

    Article  Google Scholar 

  • Hodson RE, Azam F, Carlucci AF, Fuhrmann JA, Karl DM, Holm-Hansen O (1981) Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar Biol 61:89–94

    Article  Google Scholar 

  • Holm-Hansen O (1985) Nutrient cycles in Antarctic marine ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 6–10

    Google Scholar 

  • Holm-Hansen O, Foster TFD (1981) A multidisciplinary study of the eastern Scotia Sea. Antarct J U S 16:159–160

    Google Scholar 

  • Holm-Hansen O, Huntley M (1984) Feeding requirements of krill in relation to food sources. J Crustacean Biol 4, Spec No 1:156–173

    Google Scholar 

  • Hopkins TL (1971) Zooplankton standing crop in the Pacific sector of the Antarctic. In: Llano GA, Wallen IE (eds) Biology of the Antarctic Seas IV. American Geophysical Union, Washington DC, pp 347–362

    Chapter  Google Scholar 

  • Ikeda T, Dixon P (1982) Body shrinkage as a possible overwintering mechanism of the Antarctic krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151

    Article  Google Scholar 

  • Ishii H, Omori M, Murano M (1985) Feeding behaviour of the Antarctic krill, Euphausia superba Dana I. Reaction to size and concentration of food particles. Trans Tokyo Univ Fish 6:117–124

    Google Scholar 

  • Jacobson DM, Anderson JM (1986) Thecate heterotrophic dinoflagellates feeding behaviour and mechanisms. J Phycol 22:249–258

    Article  Google Scholar 

  • Jennings JC Jr, Gordon LJ, Nelson DM (1984) Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309:51–53

    Article  CAS  Google Scholar 

  • Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res 36:483–495

    Article  CAS  Google Scholar 

  • Kawaguchi K, Ishikawa S, Matsuda O (1986) The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice off the Ongul Islands in Lützow-Holm Bay, Antarctica. Mem Natl Inst Polar Res, Spec Iss 44:67–85

    Google Scholar 

  • Koike I, Holm-Hansen O, Biggs DC (1986) Inorganic nitrogen metabolism by Antarctic phytoplankton with special reference to ammonium cycling. Mar Ecol Prog Ser 30:105–116

    Article  CAS  Google Scholar 

  • Macaulay MC (1981) Distribution and abundance of krill in the Scotia Sea as observed acoustically, 1981. Antarct J U S 16:166–167

    Google Scholar 

  • Mackintosh NA (1973) Distribution of post-larval krill in the Antarctic. Discovery Rep 36:95–156

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Rep 32:33–464

    Google Scholar 

  • Marschall H-P (1988) The overwintering strategy of Antarctic krill under the pack-ice of the Weddell Sea. Polar Biol 9:129–135

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • Matsuda O, Ishikawa S, Kawaguchi K (1987) Seasonal variation of downward flux of particulate organic matter under the Antarctic fast ice. Proc NIPR Symp Polar Biol 1:23–34

    Google Scholar 

  • Maykut GA (1985) The ice environment. In: Horner RA (ed) Sea ice biota. CRC Press, Inc, Florida, pp 21–82

    Google Scholar 

  • McWhinnie MA, Denys CJ, Parkin R, Parkin K (1979) Biological investigations of Euphausia superba (krill). Antarct J U S 141:163–164

    Google Scholar 

  • Miller CB, Frost BW, Batchelder HP, Clemons MJ, Conway RE (1984) Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific. Prog Oceanogr 13:201–243

    Article  Google Scholar 

  • Nöthig E-M (1986) Tank experiments with natural plankton populations: the influence of light and grazing pressure on pelagic system structure. Ophelia (Suppl) 4:179–190

    Google Scholar 

  • Nöthig E-M (1988) On the ecology of the phytoplankton in the southeastern Weddell Sea (Antarctica) in January/February 1985. Rep Pol Res 53:118

    Google Scholar 

  • O’Brien DP (1988) Direct observations of the behaviour of Euphausia superba and Euphausia crystallorophias (Crustacea: Euphausiacea) under pack-ice during the Antarctic spring of 1985. J Crustacean Biol 7:437–448

    Article  Google Scholar 

  • Olson RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    Article  CAS  Google Scholar 

  • Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes. 3rd edn, Pergamon Press, Oxford, 332 pp

    Google Scholar 

  • Patterson SL, Sievers HA (1980) The Weddell-Scotia confluence. J Phys Ocean 10:1584–1610

    Article  Google Scholar 

  • Peinert R (1986) Production, grazing and sedimentation in the Norwegian coastal current. In: Skreslet S (ed) The role of freshwater outflow in coastal marine ecosystems. Springer, Berlin Heidelberg New York, pp 361–374

    Chapter  Google Scholar 

  • Peinert R, Bodungen B von, Smetacek V (1989) Food web structure and loss rates: In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the oceans: present and past, Dahlem Konferenzen. John Wiley, Chichester, pp 35–48

    Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504

    Article  Google Scholar 

  • Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behaviour of the Antarctic krill Euphausia superba. Mar Biol 97:67–77

    Article  Google Scholar 

  • Priddle J, Croxall JP, Everson I, Heywood RB, Murphy EJ, Prince PA, Sear CB (1988) Large-scale fluctuations in distribution and abundance of krill — a discussion of possible causes. In: Sarhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin Heidelberg New York, pp 169–182

    Chapter  Google Scholar 

  • Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Lecture notes on coastal and estuarine studies, vol 8. Springer, Berlin Heidelberg New York, pp 1–18

    Google Scholar 

  • Schnack SB (1985) A note on the sedimentation of particulate matter in Antarctic waters during summer. Meeresforsch 30:306–315

    Google Scholar 

  • Schnack-Schiel S (ed) (1987) The winter expedition of RV “Polarstern” to the Antarctic (ANT V/1–3). Rep Pol Res 39:259 pp

    Google Scholar 

  • Schnack SB, Smetacek V, Bodungen B von, Stegmann P (1985) Utilization of phytoplankton by copepods in Antarctic waters during spring. In: Gray J, Christensen ME (eds) Proc 18th Eur Mar Biol Symp. John Wiley & Sons, Chichester, pp 225–232

    Google Scholar 

  • Sherr E, Sherr B (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Smetacek V (1981) The annual cycle of protozooplankton in the Kiel Bight. Mar Biol 63:1–11

    Article  Google Scholar 

  • Smetacek V (1984) The supply of food to the benthos. In: Fasham MJ (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press, New York, pp 517–548

    Google Scholar 

  • Smetacek V, Pollehne F (1986) Nutrient cycling between water column and sediment: a reappraisal of the conceptual framework. Ophelia 26:401–428

    Google Scholar 

  • Smith SL, Schnack-Schiel SB Polar zooplankton. In: Smith WO (ed) Polar oceanography. Academic Press, New York (in press)

    Google Scholar 

  • Smith WO, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience 36:251–257

    Article  CAS  Google Scholar 

  • Spindler M, Dieckmann GS (1986) Distribution and abundance of planktonic foraminifera Neogloboquadrina pachyderma in sea ice of the Weddell Sea (Antarctica). Polar Biol 5:185–191

    Article  Google Scholar 

  • Spiridonov VA, Gruzov EN, Pushkin AF (1985) Investigations of schools of Antarctic Euphausia superba (Crustacea, Euphausiacea) under the ice. Zool Zh 64:1655–1660

    Google Scholar 

  • Stegmann P, Peinert R (1984) Interrelationships between herbivorous zooplankton and phytoplankton and their effect on production and sedimentation of organic matter in Kiel Bight. Limnologica 15:487–495

    Google Scholar 

  • Stretch JJ, Hamner PP, Hamner WM, Michel WC, Cook J, Sullivan CW (1988) Foraging behaviour of krill Euphausia superba on sea ice microalgae. Mar Ecol Prog Ser 44:131–139

    Article  Google Scholar 

  • Sugimura Y, Suzuki Y (1988): A high temperature catalytic oxidation method of non-volatile dissolved organic carbon in seawater by direct injection of liquid sample. Mar Chem 24:105–131

    Article  CAS  Google Scholar 

  • Sullivan CW, McClain CR, Comiso JC, Smith WO Jr (1988) Phytoplankton Standing crops within an Antarctic ice edge assessed by satellite remote sensing. J Geophys Res 93:12487–12498

    Article  Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Explor Mer 18:287–295

    Google Scholar 

  • Takahashi M, Barwell-Clarke J, Whitney F, Koeller P (1978) Winter condition of marine plankton populations in Saanich Inlet, B C, Canada. I Phytoplankton and its surrounding environment. J Exp Mar Biol Ecol 31:283–301

    Article  Google Scholar 

  • Weeks WF, Ackley SF (1982) The growth, structure, and properties of sea ice. CRREL Monograph 82–1:130 pp

    Google Scholar 

  • Wefer G (1989) Particle flux in the ocean: Present and Past In Berger WH, Smetacek VS, Wefer G — pp. 139–154. Dahlem Konferenzen, Chichester: Wiley

    Google Scholar 

  • Yentsch DM, Yentsch ChS, Strube LR (1977) Variations in ammonium enhancement, an indication of nitrogen deficiency in New England coastal phytoplankton populations. J Mar Res 35:537–555

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smetacek, V., Scharek, R., Nöthig, EM. (1990). Seasonal and Regional Variation in the Pelagial and its Relationship to the Life History Cycle of Krill. In: Kerry, K.R., Hempel, G. (eds) Antarctic Ecosystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84074-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84074-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84076-0

  • Online ISBN: 978-3-642-84074-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics