Skip to main content

Rosa spp. (Roses): In Vitro Culture, Micropropagation, and the Production of Secondary Products

  • Chapter
Medicinal and Aromatic Plants III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 15))

Abstract

The genus Rosa includes over 100 species which are distributed throughout the temperate and subtropical regions of the Northern Hemisphere (Rehder 1960). Chromosome numbers range from 2n = 2x = 14, to 2n = 8x = 56 (Darlington and Wylie 1955). The DNA content of the rose genome is amongst the lowest recorded in the Angiospermae, the 4C value of R. wichuraiana (2n =14) measuring only 0.45–0.48 pg (Lloyd 1986). The chromosomes are correspondingly small (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amorim HV, Dougall DK, Sharp WR (1977) The effect of carbohydrate and nitrogen concentration on phenol synthesis in Paul’s Scarlet rose cells grown in tissue culture. Physiol Plant 39:91–95.

    Article  CAS  Google Scholar 

  • Asen S (1948) Embryo culture of rose seeds. Am Rose Ann 1948:119–120.

    Google Scholar 

  • Avramis T, Hugard J, Jonard R (1982) La multiplication in vitro du Rosier porte-greffe Rosa indica major. Physiol Veg CR Acad Sci Paris Ser 3, 294:63–68.

    Google Scholar 

  • Bajaj YPS (ed) (1988) Biotechnology in agriculture and forestry, vol 4: Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Bjarnason EN, Hanger BC, Moran JR, Cooper JA (1985) Production of Prunus necrotic ringspot virus-free roses by heat treatment and tissue culture. NZJ Agric Res 28:151–156.

    Google Scholar 

  • Bohm H (1982) The inability of plant cells to produce secondary substances. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 325–328.

    Google Scholar 

  • Bradford JA, Fletcher JS (1982) Influence of protein synthesis on reduction, accumulation, and amide synthesis in suspension cultures of Paul’s Scarlet rose. Plant Physiol 69:63–66.

    Article  PubMed  CAS  Google Scholar 

  • Bressan PH, Kim Y-J, Hyndman SE, Hasegawa PM, Bressan RA (1982) Factors affecting in vitro propagation of rose. J Am Soc Hortic Sci 107:979–990.

    Google Scholar 

  • Brodelius P (1985) Utilization of plant cell cultures for production of biochemicals. Hereditas Suppl 3:73–81.

    Google Scholar 

  • Broertjes C, van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam.

    Google Scholar 

  • Casey A (1985) Virus elimination from rose and popular using meristem tissue culture. M Sc Thesis, Univ Dublin.

    Google Scholar 

  • Curir P, Damiano, Cosmi T (1986) In vitro propagation of some rose cultivars. Acta Hortic 189:221–224.

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants, 2nd edn. Allen & Unwin, London.

    Google Scholar 

  • Davies DR (1980) Rapid propagation of roses in vitro. Sci Hortic 13:385–389.

    Article  Google Scholar 

  • Davies ME (1971) Regulation of histidine biosynthesis in cultured plant cells: evidence from studies on amitrole toxicity. Phytochemistry 10:783–788.

    Article  CAS  Google Scholar 

  • Davies ME (1972) Polyphenol synthesis in cell suspension cultures of Paul’s Scarlet rose. Planta 104:50–65.

    Article  CAS  Google Scholar 

  • de Proft MP, van den Broeck G, van Dijck R (1985) Implications of the container-atmosphere during micropropagation of plants. Med Fac Landbouww Rijksuniv Gent 50:129–132.

    Google Scholar 

  • Dougall DK (1965) The biosynthesis of protein amino acids in plant tissue culture. Isotope competition experiments using glucose-U-14C and the protein amino acids. Plant Physiol 40:891–897.

    Article  PubMed  CAS  Google Scholar 

  • Douglas GC, Rutledge CB, Casey A, Richardson DHS (1989) Micropropagation of floribunda, ground cover and miniature roses. Plant Cell Tissue Organ Cult 19:55–64.

    Article  Google Scholar 

  • Dubois LAM, Roggermans J, Soyeurt G, de Vries DP (1988) Comparison of the growth and development of dwarf rose cultivars propagated in vitro and in vivo by softwood cuttings. Sci Hortic 35:293–299.

    Article  Google Scholar 

  • Elliott RF (1970) Axenic culture of meristem tips of Rosa multiflora. Planta 95:183–186.

    Article  CAS  Google Scholar 

  • Fletcher JS (1975) Control of amino acid synthesis in tissue culture cells. Plant Physiol 56:405–451.

    Article  Google Scholar 

  • Fletcher JS, Beevers H (1971) Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures. Plant Physiol 48:261–264.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JS, Groeger AW, Mcfarlane JC (1987) Metabolism of 2-chlorobiphenyl by suspension cultures of Paul’s Scarlet rose. Bull Environ Contamin Toxicol 39:960–965.

    Article  CAS  Google Scholar 

  • Fosket DE (1982) Protein synthesis during the transition from the resting to the growing state in suspension cultures of Paul’s Scarlet rose cells. Physiol Plant 53:146–152.

    Article  Google Scholar 

  • Fowler MW (1986) Process strategies for plant cell cultures. Trends Biotechnol 4:214–219.

    Article  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Exegetics, Basingstoke, UK.

    Google Scholar 

  • Graifenberg A (1973) Colturo in vitro di embrioni e di parti de seme in Rosa canina. Riv Ortoflorofrutticolt Ital 57:374–380.

    Google Scholar 

  • Graifenberg A, Giustiniani L, Papandreou A (1975) In vitro culture of shoot apices of Rosa multiflora Thunb. and R. indica major. Agric Ital 1/3:119–128.

    Google Scholar 

  • Hasegawa PM (1979) In vitro propagation of rose. Hortic Sci 14:610–612.

    Google Scholar 

  • Hasegawa PM (1980) Factors affecting shoot and root initiation from cultured rose shoot tips. J Am Hortic Sci 105:216–220.

    CAS  Google Scholar 

  • Heslop-Harrison JW (1958) Roses and their chromosomes. In: Harkness J (ed) The rose annual RNRS, St Albans, UK, pp 53–61.

    Google Scholar 

  • Hilderbrandt AC, Wilmar JC, Jones N, Riker AJ (1963) Growth of edible chlorophyllous plant tissues in vitro. Am J Bot 50:248–254.

    Article  Google Scholar 

  • Hill G (1957) Morphogenesis of shoot primordia in cultured stem tissue of a garden rose. Nature (London) 216:596–597.

    Article  Google Scholar 

  • Horn W, Schlegel G, John K (1988) Micropropagation of roses. Acta Hortic 226:623–626.

    Google Scholar 

  • Horst RK (1983) Compendium of rose diseases. Phytopathol Soc, St Paul, Minn.

    Google Scholar 

  • Hurst CC (1941) Notes on the origin and evolution of our garden roses. J R Hortic Soc (London) 66:73–82, 242-250, 282-289.

    Google Scholar 

  • Hyndman SE, Hasegawa PM, Bressan RA (1982) Stimulation of root initiation from cultured rose shoots through the use of reduced concentrations of mineral salts. Hortic Sci 17:82–83.

    CAS  Google Scholar 

  • Jacobs G, Allan P, Bornman CH (1969) Tissue culture studies on rose: Use of shoot tip expiants. I Auxin: cytokinin effects. Agroplantae 1:179–187.

    CAS  Google Scholar 

  • Jacobs G, Allan P, Bornman CH (1970a) Tissue culture studies on rose: Use of shoot tip expiants. II Cytokinin: gibberellin effects. Agroplantae 2:25–28.

    CAS  Google Scholar 

  • Jacobs G, Allan P, Bornman CH (1970b) Tissue culture studies on rose: Use of shoot tip expiants. III Auxin: gibberellin effects. Agroplantae 2:45–50.

    CAS  Google Scholar 

  • Khosh-Khui M, Sink KC (1982a) Rooting-enhancement of Rosa hybrida for tissue culture propagation. Sci Hortic 17:371–376.

    Article  CAS  Google Scholar 

  • Khosh-Khui M, Sink KC (1982b) Micropropagation of new and old world Rosa species. J Hortic Sci 57:315–319.

    Google Scholar 

  • Khosh-Khui M, Sink KC (1982c) Callus induction and culture of Rosa. Sci Hortic 17:361–370.

    Article  Google Scholar 

  • Knudson L (1946) A new solution for germination of orchid seed. Am Orchid Soc Bull 15:214–217.

    CAS  Google Scholar 

  • Krishnamurthy KV, Hendre RR, Godbole DA, Kulkarni VM, Mascarenhas AF, Jagannathan V (1979) Isolationand regeneration of rose bud callus protoplasts (Rosa sp. cv. Soraya). Plant Sci Lett 15:135–137.

    Article  Google Scholar 

  • Krussman G (1981) The complete book of roses. Timber Press, Portland, OR.

    Google Scholar 

  • Langebartels C, Harms H (1984) Metabolism of pentachlorophenol in cell suspension cultures of soybean and wheat: pentachlorophenol glycoside formation. Z pflazenphysiol 113:201–211.

    CAS  Google Scholar 

  • Lata P, Gupta MN (1971) Effects of gamma rays on stem cuttings of essential oil bearing Rosa spp. Flavour Ind 2:421–425.

    Google Scholar 

  • Lloyd D (1986) The induction, in vitro, of chromosomal variation in Rosa. PhD Thesis, NE London Polytech.

    Google Scholar 

  • Lloyd D, Roberts AV, Short KC, (1988) The induction in vitro of adventitious shoots in Rosa. Euphytica 37:31–36.

    Article  Google Scholar 

  • Martin C (1985) Plant breeding in vitro. Endeavour 9:81–86.

    Article  Google Scholar 

  • Martin C, Carre M, Vernoy R (1981) La multiplication végétative in vitro des végétaux ligneux cultivés: cas des Rosiers. CR Acad Sci Paris Ser 3, 293:175–177.

    Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature (London) 330:677–678.

    Article  CAS  Google Scholar 

  • Mubitch MJ, Fletcher JS (1984) Isolation and identification of the phenols of Paul’s Scarlet rose stems and stem-derived suspension cultures. Plant Physiol 75:592–595.

    Article  Google Scholar 

  • Mubitch MJ, Fletcher JS (1985) Influence of culture age and spermidine treatment on the accumulation of phenolic compounds in suspension cultures. Plant Physiol 78:25–28.

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Nash DT, Davies ME (1972) Some aspects of growth and metabolism of Paul’s Scarlet rose cell suspensions. J Exp Bot 23:75–91.

    Article  CAS  Google Scholar 

  • Nesius KK, Uchytil LE, Fletcher JS (1972) Minimal organic medium for suspension cultures of Paul’s Scarlet rose. Planta 106:173–176.

    Article  CAS  Google Scholar 

  • Nickell LG, Tulecke W (1959) Responses of plant tissue cultures to gibberellin. Bot Gaz 120:245–250.

    Article  CAS  Google Scholar 

  • Nickeil LG, Tulecke W (1960) Submerged growth of cells of higher plants. J Biochem Microbiol Tech Eng 3:287–297.

    Article  Google Scholar 

  • Onesto J-P, Poupet R, Julien P (1985) Production de potées fleuries de rosier à partir de plantules obtenus par multiplication in vitro conforme automme 1983 — printemps 1984. Hortic 176:3–10.

    Google Scholar 

  • Pearce RS, Cocking EC (1973) Behaviour in culture of isolated protoplasts from Paul’s Scarlet rose suspension culture cells. Protoplasma 77:165–180.

    Article  Google Scholar 

  • Rehder A (1960) Manual of cultivated trees and shrubs hardy in North America, 2nd edn. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Reist A (1985a) Culture in vitro (civ) en pepinière de rosiers: premiers résultats d’exploitation de plants civ pour la coupe. Rev Suisse Vitic Arboric Hortic 17:173–176.

    Google Scholar 

  • Reist A (1985b) Culture in vitro (civ) en pepinière de rosiers: une alternative au bouturage ou au greffage des variétès? Rev Suisse Vitic Arboric Hortic 17:361–364.

    Google Scholar 

  • Rout GR, Debata BK, Das P (1989) In vitro mass-scale propagation of Rosa hybrida cv. Landora. Current Science 58:876–878.

    Google Scholar 

  • Sauer A, Walther F, Preil W (1985) Different suitability for in vitro propagation of rose cultivars. Gartenbauwissenschaft 50:133–138.

    Google Scholar 

  • Scheel D, Sandermann H (1977) Metabolism of DDT and kelthane in cell suspension cultures of parsley (Petroselinum hortense, Hoffm.) and soybean (Glycine max. L.). Planta 133:315–320.

    Article  CAS  Google Scholar 

  • Semenuik P, Arisumi T (1968) Colchicine-induced tetraploid and cytochimeral roses. Bot Gaz 129:190–193.

    Article  Google Scholar 

  • Short KC, Price L, Roberts AV (1981) Micropropagation of roses. In Harkness J (ed) The rose annual. RNRS, St Albans, UK, pp 138–144.

    Google Scholar 

  • Skirvin RM, Chu MC (1979) In vitro propagation of Forever Yours rose. HortScience 14:608–610.

    Google Scholar 

  • Smith TA, Best GR, Abbott AJ, Clements ED (1978) Polyamines in Paul’s Scarlet rose suspension cultures. Planta 144:63–68.

    Article  CAS  Google Scholar 

  • Steffen A, Eriksson T, Schieder O (1986) Shoot regeneration of mesophyll protoplasts transformed by Agrobacterium tumefaciens not achievable with untransformed protoplasts. Theor Appl Genet 72:135–140.

    Article  Google Scholar 

  • Strauss A, Potrykus I (1980) Callus formation from protoplasts of cell suspension cultures of Rosa’ Paul’s. Scarlet’. Physiol Plant 48:15–20.

    Article  Google Scholar 

  • Tabaeezadeh Z, Khosh-Khui M (1981) Anther culture of Rosa. Sci Hortic 15:61–66.

    Article  CAS  Google Scholar 

  • Threlfall DR, Goodwin TW (1963) Ubiquinone-50 and plastoquinone-45 in plant tissue cultures of Paul’s Scarlet rose. Biochem Biophys Acta 78:532–534.

    Article  PubMed  CAS  Google Scholar 

  • Tulecke W, Nickeil LG (1960) Methods, problems and results of growing plant cells under submerged conditions. Trans N Y Acad Sci 22:196–206.

    Google Scholar 

  • Tulecke W, Taggart R, Colavito L (1965) Continuous cultures of higher plant cells in liquid media. Contrib Boyce Thompson Inst 23:33–46.

    Google Scholar 

  • Tweddle D, Roberts AV, Short KC (1984) In vitro culture of roses. In: Novak FJ, Havel L, Dolezel J (eds) Plant tissue and cell culture application to crop improvement. Czech Acad Sci, Prague, pp 529–530.

    Google Scholar 

  • van de Pol PA, Joosten MHAJ, Keizer H (1986) Stenting of roses, starch depletion and accumulation during early development. Acta Hortic 189:51–59.

    Google Scholar 

  • Wegg SM, Townsley PM (1983) Ascorbic acid in cultured tissue of briar rose, Rosa rugosa. Thunb Plant Cell Rep 2:78–81.

    Article  CAS  Google Scholar 

  • Weinstein LH, Tulecke W, Nickell LG, Laurencot HJ (1962) Biochemical and physiological studies of tissue cultures and the plant parts from which they are derived. III. Paul’s Scarlet rose. Contrib Boyce Thompson Inst 21:371–386.

    CAS  Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600.

    Article  PubMed  CAS  Google Scholar 

  • Wilkowske DR (1981) Propagation in vitro of rose. Hortic Sci 16:464.

    Google Scholar 

  • Williams BL, Goodwin TW (1965) The terpenoids of tissue cultures of Paul’s Scarlet rose. Phyto-chemistry 4:81–88.

    CAS  Google Scholar 

  • Wylie AP (1954) The history of garden roses, pt 1. J R Hortic Soc (London) 79:555–571.

    Google Scholar 

  • Wylie AP (1955a) The history of garden roses, pt 2. J R Hortic Soc (London) 80:1–24.

    Google Scholar 

  • Wylie AP (1955b) The history of garden roses, pt 3. J R Hortic Soc (London) 80:77–87.

    Google Scholar 

  • Young PM, Hutchins AS, Cranfleld ML (1984) Use of antibiotics to control bacteria in shoot cultures of woody plants. Plant Sci Lett 34:203–209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Short, K.C., Roberts, A.V. (1991). Rosa spp. (Roses): In Vitro Culture, Micropropagation, and the Production of Secondary Products. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants III. Biotechnology in Agriculture and Forestry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84071-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84071-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84073-9

  • Online ISBN: 978-3-642-84071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics