Skip to main content

An Assumed Strain Mixed Formulation for Nonlinear Shells

  • Chapter

Part of the book series: Springer Series in Computational Mechanics ((SSCMECH))

Summary

A mixed finite element formulation with stabilization matrix is presented for geometrically nonlinear thin shells. This formulation is based on the degenerate solid shell element concept and the Hellinger-Reissner principle with independent strain field. The independent strain field is divided into a lower order part and a higher order part. Using the equivalence between displacement formulation and mixed formulation, the lower order part is replaced by the displacement-dependent strain at reduced integration points. The higher order independent strain terms are selected to stabilize the spurious kinematic modes which exist in the element stiffness matrix obtained by using reduced integration. One set of the higher order assumed independent strain components is presented for a four-node degenerate solid shell element. For a nine-node degenerate solid shell element, two versions of the higher order assumed independent strain field are proposed. Numerical results demonstrate that the nine-node shell element based on the present formulation produces very accurate and reliable solutions even for very thin shells undergoing large rotations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.; Irons, B. M.; Zienkiewicz, O. C.: Analysis of thick and thin shell structures by curved elements. Int. J. Numer. Methods Eng. 2 (1970) 419–451.

    Article  Google Scholar 

  2. Ramm, E.: A plate/shell element for large deflections and rotations. In Formulations and Computational Algorithms in Finite Element Analysis. U.S.-Germany Symp. Bathe, K. J.; Oden, J. T.; Wunderlich, W. (eds.) Cambridge MA M.I.T. Press 1977 264–293.

    Google Scholar 

  3. Parisch, H.: Geometrical nonlinear analysis of shells. Comp. Methods Appl. Mech. Eng. 14 (1978) 159–178.

    Article  MATH  Google Scholar 

  4. Parisch, H.: Large displacements of shells including material nonlinearities. Comp. Methods Appl. Mech. Eng. 27 (1081) 183–214.

    Article  Google Scholar 

  5. Hughes, T. J. R.; Liu, W. K.: Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comp. Methods Appl. Mech. Eng. 26 (1981) 331–362.

    MATH  Google Scholar 

  6. Hughes, T. J. R.; Liu, W. K.: Nonlinear finite element analysis of shells: Part II. Two-dimensional shells. Comp. Methods Appl. Mech. Eng. 27 (1981) 167–181.

    Article  MathSciNet  MATH  Google Scholar 

  7. Surana, K. S.: Geometrically nonlinear formulation for the curved shell elements. Int. J. Numer. Methods Eng. 19 (1983) 581–615.

    Article  MATH  Google Scholar 

  8. Oliver, J.; Onate, E.: A total Largrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part I. Two dimensional problems: shell and plate structures. I.t. J. Numer. Methods Eng. 20 (1984) 2253–2281.

    Article  MATH  Google Scholar 

  9. Lee, S. W.; Pian T. H. H.: Improvement of plate and shell finite elements by mixed formulations. AIAA J. 16 (1978) 29–34.

    Article  MATH  Google Scholar 

  10. Stolarski H.; Belytschko T.: Membrane locking and reduced integration for curved elements. J. of Appl. Mech. ASME 49 (1982) 172–176.

    Article  MATH  Google Scholar 

  11. Zienkiewicz, O. C.; Taylor, R. L.; Too J. M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3 (1971) 275–290.

    Article  MATH  Google Scholar 

  12. Hughes, T. J. R.; Cohen, M.; Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 46 (1978) 203–222.

    Article  Google Scholar 

  13. Pugh, E. D. L.; Hinton, E.; Zienkiewicz, O. C.: A study of quadrilateral plate bending elements with reduced integration. Int. J. Numer. Methods Eng. 12 (1978) 1059–1079.

    Article  MATH  Google Scholar 

  14. Parish H.: A critical survey of the 9-node degenerate shell element with special emphasis on thin shell application and reduced integration. Comp. Methods Appl. Mech. Eng. 20 (1979) 323–350.

    Article  Google Scholar 

  15. Hughes, T. J. R.; Tezduyar T. E.: Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. J. of Appl. Mech. ASME 48 (1981) 587–596.

    Article  MATH  Google Scholar 

  16. MacNeal, R. H.: Derivation of element stiffness matrices by assumed strain distributions. Nucl. Eng. Des. 70 (1982) 3–12.

    Article  Google Scholar 

  17. Bathe, K. J.; Dvorkin, E. N.: A four-node plate bending element based on Mindlin /Reissner theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367–383.

    Article  MATH  Google Scholar 

  18. Huang, H. C.; Hinton, E.: A new nine node degenerated shell element with enhanced membrane and shear interpolation. Int. J. Numer. Methods Eng. 19 (1986) 73–92.

    Article  MathSciNet  Google Scholar 

  19. Park, K. C.; Stanley, G. M.: A curved C° shell element based on assumed natural-coordinate strains. J. Appl. Mech. 53 (1986) 278–290.

    Article  MATH  Google Scholar 

  20. Jang, J.; Pinsky, P. M.: An assumed covariant strain based 9-node shell element. Int. J. Numer. Methods Eng. 24 (1987) 2389–2411.

    Article  MathSciNet  MATH  Google Scholar 

  21. Stolarski, H. K.; Chiang, M. M.: The mode-decomposition, C° formulation of curved, two-dimensional structural elements. Int. J. Numer. Methods Eng. 28 (1989) 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  22. Belytschko, T.; Ong, J. S. J.; Liu, W. K.: A consistent control of spurious singular modes in the 9-node Largrange element for the Laplace and Mindlin plate equations. Comp. Methods Appl. Mech. Eng. 44 (1984) 269–295.

    Article  MATH  Google Scholar 

  23. Belytschko, T.; Liu, W. K.; Ong, J. S. J.; Lam, J. S. L.: Implementation and application of a 9-node Largrange shell element with spurious mode control. Comp. Struct. 20 (1985) 121–128.

    Article  MATH  Google Scholar 

  24. Belytschko, T.; Liu, W. K.; Ong, J. S. J.: Mixed variational principles and stabilization of spurious mode in the 9-node element. Comp. Methods Appl. Mech. Eng. 62, (1987), 275–292.

    Article  MATH  Google Scholar 

  25. Belytschko, T.; Wong, B. L.: Assumed strain stabilization procedure for the 9-node Largrange shell element. Int. J. Numer. Methods Eng. 28 (1989) 385–414.

    Article  MATH  Google Scholar 

  26. Spilker, R. L.: Invariant 8-node hybrid stress elements for thin plates and shells. Int. J. Numer. Methods Eng. 18 (1982) 1153–1178.

    Article  MATH  Google Scholar 

  27. Saleeb, A. F.; Chang, T. Y.; Graf, \V.: A quadrilateral shell element using a mixed formulation. Comp. Struct. 19 (1987) 787–803.

    Article  Google Scholar 

  28. Lee, S. W.; Wong, S. C.; Rhiu, J. J.: Study of a nine-node mixed formulation finite element for thin plates and shells. Comp. Struct. 21 (1985) 1325–1334.

    Article  Google Scholar 

  29. Rhiu, J. J.; Lee, S. W.: A nine node finite element for analysis of geometrically non-linear shells. Int. J. Numer. Methods Eng. 26 (1988) 1945–1962.

    Article  MATH  Google Scholar 

  30. Yeom, C. H.; Lee, S. W.: An assumed strain finite element model for large deflection composite shells. accepted for publication in Int. J. Numer. Methods Eng. (1989).

    Google Scholar 

  31. Kim, Y. H.; Lee, S. W.: A solid element formulation for large deflection analysis of composite shells. Comp. Struct. 30 (1988) 269–274.

    Article  MATH  Google Scholar 

  32. Lee, S. W.; Rhiu, J. J.: A new efficient approach to the formulation of mixed finite element models for structural analysis. Int. J. Numer. Methods Eng. 23 (1986) 1629–1641.

    Article  MATH  Google Scholar 

  33. Malkus, D. S.; Hughes, T. J. R.: Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comp. Methods Appl. Mech. Eng. 15 (1978) 31–81.

    Article  Google Scholar 

  34. Lee, S. W.: Finite element methods for reduction of constraints and creep analysis. Ph. D. dissertation. Dept. Aero. and Astro. M.I.T. U.S.A. February 1978.

    Google Scholar 

  35. Rhiu, J. J.; Lee, S. W.: A new efficient mixed formulation for thin shell finite element models. Int. J. Numer. Methods Eng. 24 (1987) 581–604.

    Article  MATH  Google Scholar 

  36. Rhiu, J. J.; Lee, S. W.: A sixteen node shell element with a matrix stabilization scheme. Comput. Mech. 3 (1988) 99–113.

    Article  MATH  Google Scholar 

  37. Ausserer, M. F.; Lee, S. W.: A eighteen-node solid element for thin shell analysis. Int. J. Numer. Methods Eng. 26 (1988) 1345–1365.

    Article  MATH  Google Scholar 

  38. Rhiu, J. J.; Lee, S. W.: Two higher order shell finite elements with stabilization matrix. Accepted for publication in AIAA J. (1989).

    Google Scholar 

  39. Cheng, H.; Gupta, K. C.: An historical note on finite rotations. ASME Journal of Applied Mechanics March 56 (1989) 139–145.

    Article  MathSciNet  Google Scholar 

  40. Crisfield, M. A.: A fast incremental/iterative solution procedure that handles snap-through. Comp. Struct. 13 (1981) 55–62.

    Article  MATH  Google Scholar 

  41. Sabir, A. B.; Lock A. C.: The application of finite elements to the large deflection geometrically non-linear behavior of cylindrical shells. Variational Methods in Engineering. Brebbia, C. A.; Tottenham, H. (eds.) Southampton University Press 1973.

    Google Scholar 

  42. Harte, R.; Doppelt gekrümmte finite Dreieckelemente für die lineare und geometrsch nichtlineare Berechnung allgemeiner Flächentragwerke. Institute für Konstruktiven Ingenieurbau. Ruhr-Universitä in Bochum, Mitteilung Nr. 82–10, Nov. 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rhiu, J.J., Lee, S.W. (1990). An Assumed Strain Mixed Formulation for Nonlinear Shells. In: Krätzig, W.B., Oñate, E. (eds) Computational Mechanics of Nonlinear Response of Shells. Springer Series in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84045-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84045-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84047-0

  • Online ISBN: 978-3-642-84045-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics