Skip to main content

A New Mixed Finite Element for Analysis of Axisymmetric Inelastic Shells

  • Chapter
Computational Mechanics of Nonlinear Response of Shells

Part of the book series: Springer Series in Computational Mechanics ((SSCMECH))

  • 198 Accesses

Summary

Using a general geometrically linear theory of inelastic shells by Kollmann and Mukherjee a mixed finite element model is formulated. This element contains strains and displacements as basic unknowns. It is specialized for an axisymmetrically loaded conical geometry as originally proposed by Zienkiewicz and coworkers for elastic shells. Numerical results for elastically and inelastically deformed shells are presented, where inelastic deformations are described by Hart’s constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollmann, F.G.; Mukherjee, S.: A general, geometrically linear theory of inelastic thin shells. Acta Mechanica. 57 (1985) 41–67.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hart, E.W.: Constitutive relations for the non—elastic deformation of metals. Trans. ASME, J. Engng. Mat. Technol. 98 (1976) 193–202.

    Article  Google Scholar 

  3. Miller, K.A.: An inelastic constitutive model for monotonic cyclic and creep deformation. Part 1: Equations development and analytical procedures. Trans. ASME, J. Engng. Mat. Technol. 98 (1976) 97–105.

    Article  Google Scholar 

  4. Miller, K.A.: An inelastic constitutive model for monotonic, cyclic and creep deformation. Part 2: Applications to type 304 stainless steel. Trans. ASME, J. Engng. Mat. Technol. 98 (1976) 106–113.

    Article  Google Scholar 

  5. Robinson, D.H.: A candidate creep recovery model for 2–1/4 Cr-1 Mo steel and its experimental implementation. Oak Ridge: Oak Ridge National Laboratory, report ORNL—TM-5110, 1975.

    Google Scholar 

  6. Walker, K.P.: Research and development program for nonlinear structural modeling with advanced time—dependent constitutive relation—ships. Lewisville: NASA, NASA—report no. CR-165533, 1981.

    Google Scholar 

  7. Cormeau, I.: Elastoplastic thick shell analysis by viscoplastic solid finite elements. Int. J. Num. Meth. 12 (1978) 203–227.

    Article  MATH  Google Scholar 

  8. Hughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells. Part 1: Three—dimensional shells. Comp. Meth. Appl. Mech. Engng. 26 (1981) 333–362.

    Article  Google Scholar 

  9. Hughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells. Part 2: Two—dimensional shells. Comp. Meth. Appl. Mech. Engng. 27 (1981) 167–181.

    Article  MATH  Google Scholar 

  10. Parisch, H.: Large displacements of shells including material nonlinearities. Comp. Meth. Appl. Mech. Engng. 27 (1981) 183–204.

    Article  MATH  Google Scholar 

  11. Oden, J.T.; Reddy, J.N.: Variational methods in theoretical mechanics. Berlin—Heidelberg—New York: Springer 1976.

    MATH  Google Scholar 

  12. Lee, S.W.; Pian, T.H.H.: Improvement of plate and shell finite elements by mixed formulations. AIAA J. 16 (1978) 29–34.

    MATH  Google Scholar 

  13. Mukherjee, S.; Kollmann, F.G.: A new rate principle suitable for analysis of inelastic deformation of plates and shells. Trans. ASME, J. Appl. Mech. 52 (1985) 533–535.

    Article  MATH  Google Scholar 

  14. Kollmann, F.G.; Bergmann, V.: A new finite element for geometrically linear, inelastic analysis of axisymmetric plates and shells. Ithaca: Cornell University, Department of Theoretical and Applied Mechanics. Unpublished report 1986.

    Google Scholar 

  15. Kollmann, F.G.; Bergmann, V.: A new hybrid strain finite element for geometrically linear, inelastic analysis of axisymmetric shells, to appear in Computational Mechanics.

    Google Scholar 

  16. Zienkiewicz, O.C.; Bauer, J.; Morgan, K.; Onate, E.: A simple and efficient element for axisymmetric shells. Int. J. Num. Meth. Engng. 11 (1977) 1545–1558.

    Article  MATH  Google Scholar 

  17. Cordts, D.; Kollmann, F.G.: An implicit time integration scheme for inelastic constitutive equations with internal state variables. Int. J. Num. Meth. Engng. 23 (1986) 533–554.

    Article  MATH  Google Scholar 

  18. Banthia, V.; Mukherjee, S.: On an improved time integration for stiff constitutive models of inelastic deformation. Trans. ASME, J. Engng. Mat. Technol. 107 (1985) 282–285.

    Article  Google Scholar 

  19. Hart, E.: A micromechanical basis for constitutive equations with internal state variables. Trans. ASME, J. Engng. Mat. Technol. 106 (1984) 322–325.

    Article  Google Scholar 

  20. Kumar, V.; Mukherjee, S.; Huang, F.H.; Li, C.—Y.: Deformation in type 304 austenitic stainless steel. Final report EPRI NP-1276, Electric Power Research Institute, Palo Alto, Calif. 1979.

    Google Scholar 

  21. Kumar, V.; Mukherjee, S.: A boundary—integral equation formulation for time-dependent inelastic deformation in metals. Int. J. mech. Sci. 19 (1977) 713–724.

    Article  MATH  Google Scholar 

  22. Timoshenko, S.P.; Woinowsky—Krieger, P.: Theory of plates and shells. 2nd edition. Tokyo: Mc Graw—Hill International Book Company 1970.

    Google Scholar 

  23. Bergmann, V.: A finite element formulation for inelastic plates and shells based on a mixed variational principle. PhD dissertation, Cornell University, Ithaca, N.Y. 1989.

    Google Scholar 

  24. Kollmann, F.G.; Mukherjee, S.: Inelastic deformation of thin cylindrical shells under axisymmetric loading. Inch.—Arch. 54 (1984) 355–367.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kollmann, F.G., Bergmann, V. (1990). A New Mixed Finite Element for Analysis of Axisymmetric Inelastic Shells. In: Krätzig, W.B., Oñate, E. (eds) Computational Mechanics of Nonlinear Response of Shells. Springer Series in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84045-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84045-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84047-0

  • Online ISBN: 978-3-642-84045-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics