Skip to main content
Book cover

Rice pp 508–527Cite as

Biotechnology in the Nutritional Improvement of Rice

  • Chapter
  • 590 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 14))

Abstract

Nutritional considerations in biotechnology have arisen with the insertion of a synthetic, nutritionally balanced protein gene in potato (Jaynes et al. 1986). Soon, important staple food crops such as potato and wheat can be nutritionally improved by the use of biotechnology (Bajaj 1987, 1990). Techniques such as recombinant DNA and protoplast fusion have been found to be effective in a number of cereals (Cocking and Davey 1987). The transgenic plants obtained by biotechnological methods reveal the molecular organization in plants (Schell 1987) which can be put to effective use in their nutritional improvement. Rice, being the staple food crop of half the world’s population, can derive the maximum nutritional advantage through the utilization of current knowledge on the location of its genes and the cultivation of entire plants from protoplasts. The benefits of such improvement are likely to result in the improvement of the nutritional status of populations most in need.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj S (1987) Biotechnology of nutritional improvement of potato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 3. Potato. Springer Berlin Heidelberg New York Tokyo, pp 136–154

    Google Scholar 

  • Bajaj S (1990) Biotechnology in nutritional improvement of wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Wheat. Springer Berlin Heidelberg New York Tokyo, pp 615–643

    Google Scholar 

  • Barnes SR, Pental D (1986) Repeated DNA sequences and RUBP carboxylase/oxygenase as tools for study of rice evolution. In: Rice genetics. IRRI, Los Banos, Philippines, pp 41–51

    Google Scholar 

  • Beachell HM, Khush GS, Juliano BO (1972) Breeding for high protein content in rice. In: Rice breeding. IRRI, Los Banos, Philippines, pp 419–428

    Google Scholar 

  • Bunn CR, Matrone G (1966) In vivo interactions of cadmium, copper, zinc and iron in mouse and rat. J Nutr 90: 395–399

    PubMed  CAS  Google Scholar 

  • Byers M, Bolton J (1979) Effects of nitrogen and sulfur fertilizers on the yield, N and S content, and amino acid composition of the grain of spring wheat. J Sci Food Agric 22: 501

    Google Scholar 

  • Cagampang GB, Pedron AA, Juliano BO (1976) Changes in salt soluble proteins of rice during grain development. Phytochemistry 15: 1425–1429

    Article  CAS  Google Scholar 

  • ChaleffRS, Carlson PS (1975) Higher plant cells as experimental organisms. In: Markham R, Davies DR, Hopwood DA, Horne RW (eds) Modification of the information content of plant cells. Elsevier, North/Holland Biomed Press, Amsterdam, pp 197–214

    Google Scholar 

  • Champagne ET, Rao RM, Liuzzio JA, Robinson JW, Gale RJ, Miller F (1986a) The interaction of minerals, proteins and phytic acid in rice bran. Cereal Chem 62 (4): 231–238

    Google Scholar 

  • Champagne ET, Rao RM, Liuzzio JA, Robinson JW, Gale RJ, Miller F (1986b) Isolation and identification of soluble magnesium and potassium phytates from rice bran. Cereal Chem 63 (2): 160–163

    CAS  Google Scholar 

  • Chandra D, Mukherjee RK, Mitra BN (1986) Effect of low light intensity on grain yield and protein content of rice grown at different levels of nitrogen. Oryza 23: 235–241

    Google Scholar 

  • Chen LJ, Luthe DS (1987) Analysis of proteins from embryogenic and nonembryogenic rice (Oryza saliva L.) calli. Plant Sci 48: 181–188

    Article  CAS  Google Scholar 

  • Chong YN (1979) Malnutrition, food patterns, and nutritional requirement in Southeast Asia. In: United Nations Univ. Inter Rice Res Institute, Interfaces between agriculture, nutrition and food science. IRRI, Los Banos, Philippines, p 1–17

    Google Scholar 

  • Cocking EC, Davey MR (1987) Gene transfer in cereals. Science 236: 1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Coffman WR, Juliano BO (1979) Seed protein improvement in rice. In: Seed protein improvement in cereal grains and legumes, vol 2. IAEA Vienna, pp 261–277

    Google Scholar 

  • Coffman WR, Juliano BO (1987) Rice. In: Nutritional quality of cereal grains: genetic and agronomic improvement — Agronomy Monograph no 28, pp 101–131

    Google Scholar 

  • Cullumbine H (1950) Nitrogen balance studies on rice diets. Br J Nutr 4: 129–133

    Article  PubMed  CAS  Google Scholar 

  • Cummings JH, Hill MJ, Jenkins DJA, Pearson J, Wiggims HS (1976) Changes in fecal composition and colonic function due to cereal fiber. Am J Clin Nutr 29: 1468–1473

    PubMed  CAS  Google Scholar 

  • Cummings JH (1982) Consequences of metabolism of fiber in the human large intestine. In: Vahouny GY, Kritchevsky D (eds) Dietary fiber in health and disease. Plenum, New York, pp 9–22

    Google Scholar 

  • Davis PN, Morris LC, Kratzer FH (1968) Iron utilization and metabolism in chick. J Nutr 94: 407–417

    PubMed  CAS  Google Scholar 

  • De Datta SK, Obcemea WN, Jana RK (1972) Protein content of rice grain as affected by nitrogen fertilizer and some trizines and substituted ureas. Agron J 64: 785–788

    Article  Google Scholar 

  • Dokkum WV, Pikaar NA, Thissen JTNM (1983) Physiological effects of fiber-rich types of bread 2. Dietary fiber from bread: digestibility by intestinal microflora and waterholding capacity in the colon of human subjects. Br J Nutr 50: 61–64

    Article  PubMed  Google Scholar 

  • Eastwood MA, Kirkpatrick JR, Mitchell WD, Bone A, Hamilton T (1973) Effects of dietary supplements of wheat bran and cellulose on feces and bowel function. Br J Nutr 41: 477–485

    Google Scholar 

  • Ebisuno S, Morimoto S, Yoshida T, Fukatani T, Yasukawa S, Ohkawa T (1986) Rice-bran treatment for calcium store formers with idiopathic hypercalciuria. Br J Urol 50: 592–595

    Article  Google Scholar 

  • Eggum BO, Juliano BO, Maningat CC (1982) Protein energy utilization of rice milling fractions by rats. Qual Plant Foods Hum Nutr 31: 371–376

    Article  CAS  Google Scholar 

  • Eggum BO, Juliano BO, Villreal CP, Perez CM (1984) Effect of treatment on composition and protein energy utilization of rice and mung bean by rats. Qual Plant Foods Hum Nutr 34: 261–272

    Article  CAS  Google Scholar 

  • Endo T, Shashi B, Pai C (1971) Genetic convergence of the specific acid phosphatase zymograms in Oryza sativa. Jpn J Genet 46: 147–152

    Article  Google Scholar 

  • Eppendorfer WH (1971) Effects of S,N and P on amino acid composition of field beans (Vicia faba) and responses of the biological value of seed proteins to s-amino acid content. J Sci Food Agric 22: 501

    Article  PubMed  CAS  Google Scholar 

  • Eppendorfer WH, Eggum BO, Bille SW (1979) Nutritive value of potato crude protein as influenced by manuring and amino acid. J Sci Fd Agric 30: 361–368

    Article  CAS  Google Scholar 

  • FAO (1978) Rice-husk conversion to energy. Beagle EC (Consultant) Agricultural Services Bulletin No: 31, p32

    Google Scholar 

  • FAO (1983) Major developments and issues in the world rice economy since 1970. Rome: Committee on commodity problems, intergovernmental group on rice 27th session CCP: RI 84 /5, pp 18

    Google Scholar 

  • FAO (1984a) Rice: Parboiling. Garibaldi F (Consultant) Agricultural Services Bulletin No: 56, p 3

    Google Scholar 

  • FAO (1984b) Traditional post-harvest technology of perishable tropical staples. Agricultural Services Bulletin No: 59, p 8

    Google Scholar 

  • Furuta M, Yamagata H, Tanaka K, Kasai Z, Fujii S (1986) Cell-free synthesis of rice glutelin precursor. Plant Cell Physiol 27 (6): 1201–1204

    CAS  Google Scholar 

  • Glaszman JC (1986) A varietal classification of Asian cultivated rice (Oryza sativa L.) based on isozyme polymorphism. Rice genetics IRRI, Los Banos, Philippines, pp 83–90

    Google Scholar 

  • Gupta ML, Singh RS, Prasad J (1986) Effect of K-Fe interaction on yield and nutrient content of paddy in alluvial soil. Oryza 23: 126–128

    CAS  Google Scholar 

  • Halstead JA, Ronaghy HA, Abadi P, Haghshennass M, Amirhakemi GH, Barakat RM, Reinhold JG (1972) Zinc deficiency in man. Am J Med 53: 277–284

    Article  Google Scholar 

  • Hasegawa H, Mori S (1986) Non-proline-accumulating rice mutants resistant to hydroxy-L-proline. Theor Appt Genet 72: 226–230

    Article  CAS  Google Scholar 

  • Higashi T, Kushibuchi K, Ito R (1974) Studies on breeding for high protein rice. I. Protein content of different rice varieties and their relations with some agronomic traits including yield. Jpn J Breed 24: 88–96

    Google Scholar 

  • Hira CK, Bajaj S (1986) Protein quality of wheat-legume-potato diets supplemented with milk in adult human subjects. Indian J Med Res 83: 216–220

    PubMed  CAS  Google Scholar 

  • IRRI (1974) Annu Rep Int Rice Res Inst 1983. Los Banos, Philippines

    Google Scholar 

  • IRRI (1983) Annu Rep Int Rice Res Inst 1983, Los Banos, Philippines. Nutritional value, pp 61–66

    Google Scholar 

  • Ismunadi M (1982) Effect of sulfur application on chemical composition and production of lowland rice (in Indonesia) D Agric. Thesis Bogor Agric, Univ Bogor, Indonesia

    Google Scholar 

  • Jasvinder Kaur, Murgai U, Bajaj S (1987) Microbial evaluation of cereal protein. J Sci Food Agric 40: 145–150

    Article  Google Scholar 

  • Jaynes JM, Yang MS, Espinoza N, Dodds JH (1986) Plant protein improvement by genetic engineering: use of synthetic genes. In: Trends in Biotechnology. Elsevier Science, Amsterdam, pp 314–320

    Google Scholar 

  • Joseph K, Narayana Rao M, Ganpathy S, Swaminathan M, Subrahmanyan Y (1958) Studies on nutritive value of rice and rice diets. II. Metabolism of nitrogen calcium and phosphorus in children on poor vegetarian diets containing husked, undermilled and milled raw rice. Ann Biochem Exp Med 18: 51–58

    Google Scholar 

  • Juliano BO (1972) The rice caryopsis and its composition. In: Houston DF (ed) Rice chemistry and technology. American Assoc Cereal Chem Inc, St Paul Minn, Chap 2, pp 16–74

    Google Scholar 

  • Juliano BO (1979) The chemical basis of rice grain quality. In: Proc Workshop Chemical aspects of rice grain quality. IRRI, Los Banos, Philippines, pp 69–90

    Google Scholar 

  • Juliano BO (1980) Quality characteristics of milled rice grown in different countries. IRRI Res Pap Ser 48: 25

    Google Scholar 

  • Juliano BO (1982) Properties of the rice caryopsis. In: Luh BS (ed) Rice: production and utilization. AVI Westport, Conn, pp 403–438

    Google Scholar 

  • Juliano BO (1985a) Rice. J Plant Foods 6: 129–145

    Google Scholar 

  • Juliano BO (1985b) The composition and properties of rice in relation to acceptability. Proc XII Int Congr Nutr. Bringhton UK, Taylor TG, Jenkins NK (eds) Libbey, London, pp 869–871

    Google Scholar 

  • Juliano BO (1985c) Factors affecting nutritional properties of rice protein. Trans Nat Acad Sci Tech (Phils) 7: 205–216

    CAS  Google Scholar 

  • Juliano BO, Gracia MA, Ibabao MGB, Perez CM, Virgilio R, Caarangal (1987a) Nutritional properties of non rice farming system network. Plant Foods Hum Nutr 36: 273–278

    CAS  Google Scholar 

  • Juliano BO, Ibbabao MGB, Perez CM, Clark RB, Maranville JW, Mamaril CP, Choudhury NH, Momuat CJS, Corpuz IT (1987b) Effect of soil sulfur deficiency on sulfur amino acids and elements in brown rice. Cereal Chem 64 (1): 27–30

    CAS  Google Scholar 

  • Kambayashi M, Tsurumi I, Sasahara T (1984) Genetic studies on improvement of protein content in rice grain. Jpn J Breed 34: 356–363

    CAS  Google Scholar 

  • Kelsay JL, Behall KM, Prather ES (1978) Effect of fiber from fruits and vegetables on metabolic responses of human subjects. 1. Bowel transit time, number of defecations, fecal weight, urinary excretions of energy and nitrogen and apparent digestibility of energy, nitrogen and fat. Am J Clin Nutr 31: 1149–1153

    Google Scholar 

  • Kennedy BM (1980) Nutritional quality of rice endosperm. In: Luh BS (ed) Rice: production and utilization. Westport, Conn Avi, pp 439–469

    Google Scholar 

  • Kim WT, Okita TW (1988) Nucleotide and primary sequence of major rice prolamin. FEBS Lett 231: 308–310

    Article  PubMed  CAS  Google Scholar 

  • Kumamaru T, Satoh H, Omura T, Ogawa M (1984) Mutants for storage proteins of rice induced by N-methyl-N-nitrourea (NMU) Jpn J Breed 34 (2): 164–165

    Google Scholar 

  • Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K (1988) Mutants for rice storage proteins. 1. Screening of mutants for rice storage proteins of protein bodies in the starchy endosperm. Theor Appl Genet 76: 11–16

    Article  CAS  Google Scholar 

  • Li Chin-Fung (1980) Rice snack foods. In: Rice production and utilization. Luh BS (ed) Avi, Westport Conn, pp 690–711

    Google Scholar 

  • Linkuski HJA, Forbes RM (1964) Effect of phytic acid on the availability of zinc in amino acid and casein diets fed to chicks. J Nutr 84: 145–148

    Google Scholar 

  • Linkuski HJA, Forbes RM (1965) Mineral utilization in rat. IV. Effect of calcium and phytic acid on utilization of dietary zinc. J Nutr 85: 230–234

    Google Scholar 

  • Mandac BE, Juliano BO (1978) Properties of prolamin in mature developing rice grain. Phytochemistry 17: 611–614

    Article  CAS  Google Scholar 

  • Masumura T, Shibata D, Hibino T, Kato T, Kawabe K, Takeba G, Tanaka K, Fujii S (1989) cDNA cloning of an mRNA encoding a sulfur rich 10kDa prolamin polypeptide in rice seeds. Plant Mol Biol 12: 123–130

    Google Scholar 

  • Miao S, Duncan DR, Widholm JM (1988) Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophan, S-2-aminoethyl-L-cysteine and high levels of L-lysine plus L-threonine. Plant Cell Tissue Organ Cult 14: 3–14

    Article  CAS  Google Scholar 

  • Miyoshi H, Toyoko O, Yuriko O, Koishi H (1986) Effects of rice fiber on fecal weight, apparent digestibility of energy, nitrogen and fat, and degradation of neutral detergent fiber in young men. J Nutr Sci Vitaminol 32: 581–589

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Hasegawa H, Nakamura K, Nakanishi H, Murakami M (1985) Characterisation of callus-cell lines of rice resistant to hydroxy-L-proline. Theor Rice Genet Newslett 2: 89–91

    Google Scholar 

  • Mori S, Hasegawa H, Murakami M (1986) Characterisation of hydroxy-L-proline resistant mutants in rice. In: Proc 6th Int Congr Plant Tissue Cell Culture. Univ Minnesota, Minneapolis, pp 380

    Google Scholar 

  • Ogawa M, Kumamaru T, Satoh H, Iwata N, Omura T, Kasai Z, Tanaka K (1987) Purification of protein body of rice seed and its polypeptide composition. Plant Cell Physiol 28 (8): 1517–1527

    CAS  Google Scholar 

  • Ogura H, Kyozuka J, Hayashi Y, Koba T, Shimamoto K (1987) Field performance and cytology of protoplast-derived rice (Oryza saliva): High yield and low degree of variation of four japonica cultivars. Theor Appl Genet 74: 670–676

    Google Scholar 

  • Osone K, Takagi T (1970) Studies for breeding high protein content and quality in rice. I. Estimation of seed protein content using dye binding method. Jpn J Breed 20: 301–304

    Google Scholar 

  • Padhye VW, Salunkhe DK (1979) Extraction and characterisation of rice proteins. Cereal Chem 56: 389–393

    CAS  Google Scholar 

  • Pereira SM, Begum A, Juliano BO (1981) Effect of high protein rice on nitrogen retention and growth of preschool children on a rice-based diet. Qual Plant Foods Hum Nutr. 31: 97–108

    Article  Google Scholar 

  • Rama Rao G, Desikachar HSR, Subrahmnayan V (1960) The effect of degree of polishing of rice on nitrogen and mineral metabolism in human subjects. Cereal Chem 37: 71–78

    Google Scholar 

  • Reinhold JG (1971) High phytate content of rural Iranian bread: a possible cause of human zinc deficiency. Am J Clin Nutr 24: 1204–1206

    PubMed  CAS  Google Scholar 

  • Reinhold G, Nasr K, Lahimgarzadeh A, Hedayati H (1973) Effect of purified phytate and phytate-rice bread upon metabolism of zinc, calcium, and phosphorus and nitrogen in man. Lancet 1: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Resurreccion AP, Juliano BO, Tanaka Y (1979) Nutrient content and distribution in milling fractions of rice grain. J Food Sci Agric 30: 475–481

    Article  CAS  Google Scholar 

  • Roxas BV, Loyola AS, Reyes EL (1978) The effect of different degrees of rice milling on nitrogen digestibility and retention. Phil J Nutr 31: 110–113

    Google Scholar 

  • Santiago MIC, Roxas BV, Intengan CL, Juliano BO (1984) Protein energy utilization of brown, undermilled and milled rices by preschool children. Qual Plant Plant Foods Hum Nutr 134: 15–25

    Article  Google Scholar 

  • Santiago MIC, Intengan CL, Roxas BY, Juliano BO, Perez CM, Loyola AS, Alejandro ER, Abadilla JN, Yu GFB, Mallilin AC (1986) Protein requirements of preschool children consuming rice-milk, rice-toasted mungbean, and rice diets. Qual Plant Plant Hum Nutr 36: 167–178

    Article  Google Scholar 

  • Schaeffer GW, Sharpe FT (1981) Lysine in seed protein from S-aminoethyl-L-cysteine resistant anther-derived tissue cultures of rice. In Vitro 17: 345–352

    Google Scholar 

  • Schaeffer GW, Sharpe FT (1984) Mutations and cell selections: Genetic variation for improved protein in rice. In: Owens LD (ed) Improvement in rice protein by cell culture. Genetic Engineering: Applications to agriculture. Beltsville Symp 7. Rowman 8888 Allenheld, Totowa, pp 237–254

    Google Scholar 

  • Schaeffer GW, Sharpe FT (1987) Increased lysine and seed storage protein in rice plants recovered from calli selected with inhibitory levels of lysine plus threonine and S-(2-Aminoethyl) cysteine. Plant Physiol 84: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer GW, Sharpe FT, Cregan PB (1984) Variation for improved protein and yield from rice anther culture. Theor Appl Genet 67: 383–389

    Article  CAS  Google Scholar 

  • Schell J St (1987) Transgenic plants as tools to study the molecular organization of plant genes. Science 237: 1176–1183

    Article  Google Scholar 

  • Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.). Study of polymorphism scored at 40 isozyme loci. Jpn J Genet 57: 25–57

    Article  Google Scholar 

  • Second G (1986) Isozymes and phylogenetic relationships in Oryza. In: Rice genetics. Proc Rice genetics Symp 27–3Ist May 1985. IRRI, Los Banos, Philippines, pp 27–39

    Chapter  Google Scholar 

  • Sharpe LM, Peacock WC, Cooke R, Harris RS (1950) The effect of phytate and other food factors on iron absorption. J Nutr 41: 433–446

    PubMed  CAS  Google Scholar 

  • Shin YB, Tanaka S, Katayama T (1977) Studies on quantitative and qualitative improvement of rice. Application of DBC as a screening technique and assessment of Japanese local rice varieties for high protein and lysine. Sci Bull Fac Kyshu Univ 31: 145–150

    Google Scholar 

  • Southgate DAT, Branch WJ, Hill MJ (1976) Metabolic responses to dietary supplements of bran. Metabolism 25: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Subrahmanyan V, Narayana Rao M, Swaminathan M (1956) Nutritive value and keeping quality of husked, undermilled and milled raw rice. Bull Cent Food Tech Res Inst Mysore India 5: 329–334

    CAS  Google Scholar 

  • Sugimoto T (1982) Isolation and characterisation of two types of protein bodies in starchy endosperm of rice grain. PhD Thesis Kyoto Univ

    Google Scholar 

  • Sugimoto T, Tanaka K, Kasai Z (1986) Molecular species in protein body II (PB II) of developing rice endosperm. Agric Biol Chem 50 (12): 3031–3035

    Article  CAS  Google Scholar 

  • Sun Z, Zheng K (1990) Somaclonal variation in rice. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement. I. Springer, Berlin Heidelberg New York Tokyo, pp 288–325

    Google Scholar 

  • Swaminathan MS (1982) Improving the productivity of rice-based farming systems: The challenges ahead. In: Rice research in the 1980s: Summary report from 1982. Inter Rice Research Confer, IRRI, Los Banos, Philippines, pp 1–115

    Google Scholar 

  • Tanaka K, Kasai Z (1980) Phytic acid in rice grains. In: Ory RL (ed) Antinutrients and natural toxicants in foods. Food and Nutrition Press, Westport CT, USA

    Google Scholar 

  • Tanaka K, Ogawa M (1986) Genetic analysis of rice storage proteins. In: Rice genetics, Proc Rice Genet Symp 27th-31st May 1985. IRRI, Los Banos, Philippines, pp 887–897

    Google Scholar 

  • Tanaka K, Sugimoto T, Ogawa M, Kasai Z (1980) Isolation and characterisation of two types of protein bodies in rice endosperm. Agric Biol Chem 44: 1633–1639

    Article  CAS  Google Scholar 

  • Tanaka K, Sugimoto T, Ogawa M, Kasai Z (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70: 1094–1100

    Article  PubMed  Google Scholar 

  • Tanaka Y, Hayashida S, Hongo M (1975a) Quantitative relation between feces and rice protein bodies. Nippon. Nogeikagaku Kaishi 49: 425–429

    Google Scholar 

  • Tanaka Y, Hayashida S, Hongo M (19756) The relationship of the feces protein particles to rice protein bodies. Agric Biol Chem 39: 515–518

    Google Scholar 

  • Uchimiya H (1987) DNA mediated transformation through plant cell culture. In: Kon OL (ed) Integration and control of metabolic processes. Cambridge Univ. Press New York, pp 504–515

    Google Scholar 

  • Van Montagu M (1986) The Ti plasmids ofAgrobacterium as vectors for gene transfer of plants. In: Proc Rice Genet Symp. IRRI, Los Banos, Philippines, pp 839–848

    Google Scholar 

  • Wakasa K, Widholm JM (1982) Regeneration of resistant cells of tobacco and rice to amino acids and amino acid analogs. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 455–456

    Google Scholar 

  • Wakasa K, Widholm JM (1987) A 5-methyltryptophan resistant rice mutant MTR1, selected in tissue culture. Theor Appl Genet 74: 49–54

    Article  Google Scholar 

  • Wallace JC, Galili G, Kawata EE, Cuellar RE, Shotwell MA, Larkins BA (1988) Aggregation of Lysine-containing zeins into protein bodies in Xenopus occytes. Science 240: 662–664

    Article  PubMed  CAS  Google Scholar 

  • Wang Hsi-Hua (1980) Fermented rice products. In: Luh BS (ed) Rice production and utilization. AVI, Westport, Conn, pp 650–689

    Google Scholar 

  • WHO and FAO (1973) Energy and protein requirements. WHO Geneva, FAO Nutr Meet Rep 52, FAO Rome, p 63

    Google Scholar 

  • Wrigley CW, Cross DL DU, Fullington JG, Kasarda DD (1984) Changes in polypeptide composition and grain quality due to sulfur deficiency in wheat. J Cereal Sci 2: 15

    Article  CAS  Google Scholar 

  • Wu R, Peng Z, Kao T, Moon E, Cai Y (1986) Molecular cloning and sequencing of rice genes. In: Rice genetics. Proc Rice Genet Symp 27th-31st May 1985. IRRI, Los Banos, Philippines, pp 825–837

    Google Scholar 

  • Yamagata H, Tanaka K (1986) The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol 27: 135–145

    CAS  Google Scholar 

  • Yamagata H, Sugimoto T, Tanaka K, Kasai Z (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70: 1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Tamura K, Tanaka K, Kasai Z (1986) Cell-free synthesis of rice prolamin. Plant Cell Physiol 27 (7): 1419–1422

    CAS  Google Scholar 

  • Zambryski P, Herrera-Estrella L, Block MD, Montagu M van, Schell J (1984) The use of Ti plasmid of Agrobacterium to study the transfer and expression of foreign DNA in plant cells: new vectors and methods. In: Setlow J, Hollander A (eds) Genetic engineering, principles and methods, vol 6. Plenum, New York, pp 253–278

    Google Scholar 

  • Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation mediated plasmid uptake into protoplasts. Plant Cell Rep 7: 379–384

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, S. (1991). Biotechnology in the Nutritional Improvement of Rice. In: Bajaj, Y.P.S. (eds) Rice. Biotechnology in Agriculture and Forestry, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83986-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83986-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83988-7

  • Online ISBN: 978-3-642-83986-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics