Skip to main content

Patterns of Gap Junctional Permeability in Developing Insect Tissues

  • Conference paper
Book cover Parallels in Cell to Cell Junctions in Plants and Animals

Part of the book series: NATO ASI Series ((ASIH,volume 46))

Abstract

The gap junction is an essential membrane component of animal tissues. Arising early in animal evolution, gap junctions are found in the most primitive multicellular organisms and in most Metazoa (reviewed in Revel, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blennerhassett MG and Caveney S (1984) Separation of developmental compartments by a cell type with reduced junctional permeability. Nature 308: 361–364

    Article  Google Scholar 

  • Buehr M, Lee S. McLaren A and Warner A (1987) Reduced gap junctional communication is associated with the lethal condition characteristic of DDK mouse eggs fertilized by foreign sperm. Development 101: 449–459

    PubMed  CAS  Google Scholar 

  • Campbell GL and Caveney S (1989) Engrailed gene expression in the abdominal segment of Oncopeltus: gradients and cell states in the insect segment. Development, in press

    Google Scholar 

  • Caveney S (1985a) The role of gap junctions in development. Ann Rev Physiol 47: 319–335

    Article  CAS  Google Scholar 

  • Caveney S (1988) Developmental physiology of insect gap junctions. In Gap Junctions. Edited by EL Hertzberg and RG Johnson. pp 495–504. Alan Liss New York

    Google Scholar 

  • Caveney S and Berdan RC (1982) Selectivity in junctional coupling between cells of insect tissues. In Insect Ultrastructure Vol 1. Edited by RC King and H Akai. pp 434–465

    Google Scholar 

  • Caveney S and Blennerhassett MG (1980) Elevation of ionic conductance between insect epidermal cells by -ecdysone in vitro. J. Insect Physiol 26: 13–25

    Article  CAS  Google Scholar 

  • Caveney S and Safranyos RGA (1985) Control of molecular movement within a developmental compartment. In Gap Junctions. Edited by MVL Bennett and DC Spray. pp 265–273. Cold Spring Harbor Press New York

    Google Scholar 

  • Caveney S and Safranyos RGA (1989) Changes in junctional permeability and selectivity in the epidermal cells of the growing segment. Develop Biol, submitted

    Google Scholar 

  • Caveney S, Berdan RC and McLean S (1980) Cell-to-cell ionic communication stimulated by 20hydroxyecdysone occurs in the absence of protein synthesis and gap junction growth. J Insect Physiol 26: 557–567

    Article  CAS  Google Scholar 

  • Caveney S, Berdan RC, Blennerhassett MG and Safranyos RGA (1986) Cell-to-cell coupling via membrane junctions: methods that show its regulation by a developmental hormone in an insect epidermis. In Techniques in the Life Science, C2: In Vitro Invertebrate Hormones and Genes. Edited by Caveney S, Berdan RC, Blennerhassett MG and Safranyos RGA. pp 1–23. Elsevier Scientific Publishers Ireland

    Google Scholar 

  • Chow I and Young SH (1987) Opening of single gap junction channels during formation of electrical coupling between embryonic muscle cells. Develop Biol 122: 332–337

    Article  PubMed  CAS  Google Scholar 

  • Cooke J (1981) Scale of body pattern adjusts to available cell number in amphibian embryos. Nature 290: 775–778

    Article  PubMed  CAS  Google Scholar 

  • Eichenberger-Glintz S (1979) Intercellular junctions in development and tissue cultures of Drosophila melanogaster: an electron-microscope study. Wilhelm Roux Arch Entwicklungsmech Org 186: 333–349

    Article  Google Scholar 

  • Fraser SE, Green CR, Bode HR and Gilula NB (1987) Selective disruption of gap junctional communication interferes with a patterning process in Hydra. Science 237: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Goodall H and Johnson MH (1984) The nature of intercellular coupling within the preimplantation mouse embryo. J. Embryo Exp Morph 79: 53–76

    CAS  Google Scholar 

  • Green CR (1988) Evidence mounts for the role of gap junctions during development. Bioessays 8: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S, Turin L and Warner A (1988) Patterns of junctional communication during development of the early amphibian embryo. Development 103: 769–783

    PubMed  CAS  Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Kalimi GH and Lo CW (1988) Communication compartments in the gastrulating mouse embryo. J Cell Biol 107: 241–255

    Article  PubMed  CAS  Google Scholar 

  • Kam E, Melville L and Pitts JD (1986) Patterns of junctional communication in the skin. J Invest Dermato187: 748–753

    Google Scholar 

  • Lee S, Gilula NB and Warner AE (1987) Gap junctional communication and compaction during preimplantation stages of mouse development. Cell 51: 851–860

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1985) The structure of epidermal feet during their development. Tissue and Cell 17: 901–921

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WE (1979) Junctional intercellular communication and the control of growth. Biochem Biophys Acta 560: 1–65

    PubMed  CAS  Google Scholar 

  • Manejwala FM, Cragoe ET and Schultze RM (1989) Blastocoel expansion in the mouse embryo: Role of extracellular sodium and chloride and possible apical routes of their entry. Develop Biol 133: 210–220

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Arias A and Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642

    Article  PubMed  CAS  Google Scholar 

  • McLachlin JR, Caveney S and Kidder GM (1983) Control of gap junction formation in early mouse embryos. Develop Biol 98: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Miller TM and Goodenough DA (1986) Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol 102: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Neyton J and Trautmann A (1985) Single channel currents of an intercellular junction. Nature 274: 133–136

    Google Scholar 

  • Othmer HG and Pate E (1980) Scale-invariance in reaction-diffusion models of spatial pattern formation. Proc Natl Acad Sci USA 77: 4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (1985) Importance of electrical cell-cell communication in secretory epithelia. In Gap Junctions (MVL Bennett and DC Spray eds). pp 315–324. Cold Spring Harbor New York

    Google Scholar 

  • Pitts JD, Kam E, Melville E and Watt FM (1986) Patterns in junctional communication in animal tissues. In Junctional Complexes of Epithelial Cells. Ciba Foundation Symposium 125. pp 140–153. Wiley Chichester

    Google Scholar 

  • Revel J-P (1987) The oldest multicellular animal and its junctions. In Gap Junctions (EL Hertzberg and R Johnson eds) Modem Cell Biology 7. pp 135–149. Alan Liss New York

    Google Scholar 

  • Safranyos RGA and Caveney S (1985) Rates of diffusion of fluorescent molecules via cell-to-cell membrane channels in a developing tissue. J Cell Biol 100: 736–747

    Article  PubMed  CAS  Google Scholar 

  • Safranyos RGA, Caveney S, Miller JG, and Petersen NO (1987) Relative roles of gap junction channels and cytoplasm in cell-to-cell diffusion of fluorescent tracers. Proc Natl Acad Sci USA 84: 2272–2276

    Article  PubMed  CAS  Google Scholar 

  • Serras F and van den Biggelaar JAM (1987) Is a mosaic embryo also a mosaic of communication compartments? Developmental Biology 120: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Serras F, Baud C, Moreau M, Cuerrier P and van den Biggelaar JAM (1988) Intercellular communication in the early embryo of the ascidian Ciona intestinalis. Development 102: 55–63

    Google Scholar 

  • Van Winkle LJ, Haghighat N, Campione AL and Gorman JM (1988) Glycine transport in mouse eggs and preimplantation conceptuses. Bioch et Biophys Acta 941: 241–256

    Article  Google Scholar 

  • Veenstra RD and De Haan RL (1986) Measurement of single channel currents from cardiac gap junctions. Science 233: 972–974

    Article  PubMed  CAS  Google Scholar 

  • Warner, AE (1973) The electrical properties of the ectoderm during induction and early development of the nervous system. J. Physiol 235: 267–286

    PubMed  CAS  Google Scholar 

  • Warner A and Gordon JB (1987) Functional gap junctions are not required for muscle gene activation by induction in Xenopus embryos. J Cell Biol 104: 557–564

    Article  PubMed  CAS  Google Scholar 

  • Warner AE and Lawrence PA (1982) Permeability of gap junctions at the segmental border in insect epidermis. Cell 28: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Warner AE, Guthrie SE and Gilula NB (1984) Antibodies to gap junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Watson AJ and Kidder GM (1988) Immunofluorescence assessment of the timing and appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Developmental Biology 126: 80–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caveney, S. (1990). Patterns of Gap Junctional Permeability in Developing Insect Tissues. In: Robards, A.W., Lucas, W.J., Pitts, J.D., Jongsma, H.J., Spray, D.C. (eds) Parallels in Cell to Cell Junctions in Plants and Animals. NATO ASI Series, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83971-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83971-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83973-3

  • Online ISBN: 978-3-642-83971-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics