Skip to main content

The Insect Oocyte: Fertilization, Activation and Cytoplasmic Dynamics

  • Conference paper
Mechanism of Fertilization: Plants to Humans

Part of the book series: NATO ASI Series ((ASIH,volume 45))

Abstract

The transition from oogenesis to embryogenesis has received little attention in insects so far, owing largely to internal fertilization that prevents direct observation. Fertilization is characterized by extreme sperm economy, sometimes linked to gigantic sperm length. Egg activation as a rule is not initiated by sperm entrance but by changes connected with egg deposition (deformation, water uptake etc.). Both fertilization and activation can be achieved in vitro. The ooplasmic movements prominent in many species during both oogenesis and early embryogenesis seem largely independent of cleavage nuclei but may require extranuclear sperm contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BA (1972) Sperm morphology and fertilization biology. In Beatty RA, Gluecksohn-Waelsch S (eds) The genetics of the spermatozoon. Edinburgh and New York, p 131

    Google Scholar 

  • Afzelius BA, Baccetti B & Dallai R (1976) The giant spermatozoon of Notonecta. J Submicrosc Cytol 8:149–161

    Google Scholar 

  • Baccetti B, Dallai R & Burrini AG (1973) The spermatozoon of Arthropoda. XVIII. The non-motile bifurcated sperm of Psychodidae flies. J Cell Sci 12:287–311

    PubMed  CAS  Google Scholar 

  • Bellen HJ, O’Kane, CJ, Wilson C, Grossniklaus U, Pearson RK and Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes & Development 3:1288–1300

    Article  CAS  Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M & Nüsslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756

    PubMed  CAS  Google Scholar 

  • Boucher L & Huignard J (1987) Transfer of male secretions from the spermatophore to the female insect in Caryedon serratus (Ol.): Analysis of the possible trophic role of these secretions. J Insect Physiol 33:949–957

    Article  CAS  Google Scholar 

  • Brandt-Rosquist K & Lümng KG (1984) Double fertilization in Drosophila melanogaster. Hereditas 101:69–73

    Article  Google Scholar 

  • Chen PS (1984) The functional morphology and biochemistry of insect male accessory glands and their secretions. Ann Rev Entomol 29:233–255

    Article  CAS  Google Scholar 

  • Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M & Böhlen P. (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:291–298

    Article  PubMed  CAS  Google Scholar 

  • Davey KG (1985) The female reproductive tract. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press Vol. I, Oxford p 15

    Google Scholar 

  • Degrugillier ME & Leopold RA (1976) Ultrastructure of sperm penetration of house fly eggs. J Ultrastruct Res 56:312–325

    Article  PubMed  CAS  Google Scholar 

  • Driever W & Nüsslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Kobayashi M, Kobayashi J, Shimada T & Yoshitake N (1988) The detection of mosaics and polyploids in a hereditary mosaic strain of the silk moth, Bombyx mori. using egg colour mutants. Genet Res Camb 51:223–229

    Article  Google Scholar 

  • Fasano L & Kerridge S (1988) Monitoring positional information during oogenesis in adult Drosophila. Development 104:245–253

    PubMed  CAS  Google Scholar 

  • Fehrenbach H, Dittrich V & Zissler D (1987) Eggshell fine structure of three lepidopteran pests: Cydia pomonella (L.) (Tortricidae), Heliothis virescens (Fabr.), and Spodoptera littoralis (Boisd.) (Noctuidae) Int J Insect Morphol Embryol 16:201–219

    Article  Google Scholar 

  • Fink TJ & Yasui LS (1988) Ultrastructure of the sperm of Dolania americana Edmunds and Traver (Ephemeroptera: Behningiidae). Int J Insect Morphol Embryol 17:447–454

    Article  Google Scholar 

  • Frohnhöfer HG & Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125

    Article  Google Scholar 

  • Frohnhöfer HG & Nüsslein-Volhard C (1987) Maternal genes required for the anterior localization of bicoid activity in the embryo of Drosophila. Genes Dev 1:880–890

    Article  Google Scholar 

  • Frohnhöfer HG, Lehmann R, Nüsslein-Volhard C (1986) Manipulating the anteroposterior pattern of the Drosophila embryo. J Embryol Exp Morphol 97:169–179

    PubMed  Google Scholar 

  • Fuyama Y (1984) Gynogenesis in Drosophila melanogaster. Jpn J Genet 59:91–96

    Article  Google Scholar 

  • Fuyama Y (1986) Genetics of parthenogenesis in Drosophila melanogaster. II. Characerization of a gynogenetically reproducing strain. Genetics 114:495–509

    PubMed  CAS  Google Scholar 

  • Gutzeit HO & Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J exp Embryol Morphol 67:101–111

    Google Scholar 

  • Gutzeit HO (1985) Oosome formation during in vitro oogenesis in Bradysia tritici (syn. Sciara ocellaris). Roux’s Arch Dev Biol 194:404–410

    Google Scholar 

  • Gutzeit HO (1986) Transport of molecules and organelles in meroistic ovarioles of insects. Differentiation 31:155–165

    Article  CAS  Google Scholar 

  • Gutzeit HO, Zissler D & Perondini ALP (1985) Intracellular translocation of symbiotic bacteroids during late oogenesis and early embryogenesis of Bradysia tritici (syn. Sciara ocellaris) (Diptera:Sciaridae) Differentiation 29:223–229

    Article  Google Scholar 

  • Heming-van Battum KE & Heming BS (1986) Structure, function and evolution of the reproductive system in females of Hebrus pusillus and Hebrus ruficeps (Hemiptera Gerromorpha Hebridae). J Morphol 190:121–168

    Article  Google Scholar 

  • Hennig W (1989) Spermatogenesis in Drosophila. In: Malacinski GM (ed) Developmental genetics of higher organisms. Collier Macmillan Publ. London, p 239

    Google Scholar 

  • Humpesch UH (1980a) Effect of temperature on the hatching time of eggs of five Ecdyonurus spp. (Ephemeroptera) from austrian streams and english streams, rivers and lakes. J AnimEcol 49:317–333

    Google Scholar 

  • Humpesch UH (1980b) Effect of temperature on the hatching time of parthenogenetic eggs of five Ecdyonurus spp. and two Rhithrogena spp. (Ephemeroptera) from austrian streams and english rivers and lakes. J Anim Ecol 49:927–937

    Article  Google Scholar 

  • Hunt BP (1951) Reproduction of the burrowing mayfly, Hexagenia limbata (Serville), in Michigan. Florida Entomol 34:59–70

    Article  Google Scholar 

  • Illmensee K, Mahowald AP & Loomis MR (1976) The ontogeny of germ plasm during oogenesis in Drosophila. Devel Biol 49:40–65

    Article  CAS  Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BGM (1987) The ultrastructure and phylogeny of insect spermatozoa. Cambridge University Press

    Google Scholar 

  • Joly D & Lachaise D (1989) Sperm competition in Drosophila. Abstract, 11th European Drosophila Res. Conf., p. 57

    Google Scholar 

  • Jung E, Nuss E & Wolf R (1977) Geschnürte Pimpla-Eier zeigen nur im hinteren Teilembryo Segmentausfall: Sind abgeänderte Ooplasmaströmungen die Ursache? Verh Dtsch Zool Ges 1977:307

    Google Scholar 

  • Kalthoff K & Rebagliati M (1990) Cytoplasmic localization in insect eggs. In: Malacinski GM (ed) Cytoplasmic organization systems. McGraw-Hill Publ Comp New York, p 295

    Google Scholar 

  • Kurokawa H and Hihara F (1976) Number of first spermatocytes in relation to phylogeny of Drosophila (Diptera: Drosophilidae). Int J Insect Morphol Embryol 5:51–63

    Article  Google Scholar 

  • Lanot R, Roussel JP & Thiebold JJ (1989) Ecdysteroids and meiotic reinitiation in oocytes of Periplaneta americana (Dictyoptera) and Gryllus bimaculatus (Orthoptera). J Invert Reprod Develop 15:69–74

    Article  CAS  Google Scholar 

  • Lanot R, Thiebold J, Lagueux M, Goltzene F & Hoffmann JA (1987) Involvement of ecdysone in the control of meiotic reinitiation in oocytes of Locusta migratoria (Insecta, Orthoptera). Devel Biol 121:174–181

    Article  CAS  Google Scholar 

  • Laugé G (1985) Sex determination: genetic and epigenetic factors. In: Kerkut GA, Gilbert LI (eds).Comprehensive insect physiology, biochemistry and pharmacology Pergamon Press, Oxford, Vol. I, p 295

    Google Scholar 

  • Lehmann R & Nüsslein-Volhard C (1987) Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature 329:167–170

    Article  Google Scholar 

  • Mahowald AP, Allis CD & Caulton JH (1981) Rapid appearance of multivesicular bodies in the cortex of Drosophila eggs at ovulation. Devel Biol 86:505–509

    Article  CAS  Google Scholar 

  • Mahowald AP, Goralski TJ & Caulton JH (1983) In vitro activation of Drosophila eggs. Devel Biol 98:437–445

    Article  CAS  Google Scholar 

  • Malacinski GM (ed) (1988) Developmental genetics of higher organisms. A primer in developmental biology. Macmillan Publ Comp. New York

    Google Scholar 

  • Margaritis LH (1985) Structure and physiology of the eggshell. In: Kerkut GA, Gilbert LI (eds). Comprehensive insect physiology, biochemistry and pharmacolog. Pergamon Press, Oxford, Vol. 1, p 154

    Google Scholar 

  • McFarlane C & McFarlane JE (1988) Sperm penetration and in vitro fertilization of the egg of the house cricket Acheta domesticus. Int J Invert Reprod Develop 13:171–182

    Google Scholar 

  • Müller A & Büsen W (1988) Development of fertilized and unfertilized eggs of Sciara coprophila (Diptera): A cytological comparison. Abstract IV. Internat Congr Cell Biol Montreal p 408

    Google Scholar 

  • Nüsslein-Volhard C & Roth S (1989) Axis determination in insect embryos. In: Cellular basis of morphogenesis. Wiley, Chichester (Ciba Foundation Symposium 144) p 37

    Google Scholar 

  • Perotti ME & Riva A (1988) Concanavalin A binding sites on the surface of Drosophila melanogaster sperm: A fluorescence and ultrastructural study. J Ultrastruct Mol Struct Res 100:173–182

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM (1970) Insect sperm: Their structure and morphogenesis. J Cell Biol 44:243–277

    Article  PubMed  CAS  Google Scholar 

  • Pohlhammer K (1978) Insemination of eggs in the australian cricket Teleogryllus commodus Walker (Insecta, Orthoptera). Zool Jb Anat 99:157–173

    Google Scholar 

  • Putters FA & Van den Assem J (1985) Precise sex ratio in a parasite wasp: the result of counting eggs. Behav Ecol Sociobiol 17:265–270

    Article  Google Scholar 

  • Raff JW & Glover DM (1989) Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell 57:611–619

    Article  PubMed  CAS  Google Scholar 

  • Retnakaran A & Percy J (1985) Fertilization and special modes of reproduction. In: Kerkut GA, Gilbert LI (eds). Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, Vol. 1, p 231

    Google Scholar 

  • Ripley S & Kalthoff K (1983) Changes in the apparent localization of anterior determinants during early embryogenesis (Smittia spec, Chironomidae, Diptera). Roux’s Arch Dev Biol 192:353–361

    Google Scholar 

  • Ruder FJ, Frasch M, Mettenleiter TC & Büsen W (1987) Appearance of two maternally directed histone H2A variants precedes zygotic ubiquitination of H2A in early embryogenesis of Sciara coprophila (Diptera). Devel Biol 122:568–576

    Article  CAS  Google Scholar 

  • Saini MS, Singh D & Kaur M (1987) Induction of artificial parthenogenesis in Athalia lugens proxima (Hymenoptera: Tenthredinidae). Entomol Genet 12:171–176

    Google Scholar 

  • Sander K (1976a) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Article  Google Scholar 

  • Sander K (1976b) Morphogenetic movements in insect embryogenesis. In: Lawrence PA (ed) Insect development. Blackwell/Oxford, p 35

    Google Scholar 

  • Sander K (1985a) Fertilization and egg cell activation in insects. In: Metz CH, Monroy A (eds) Biology of fertilization. Academic Press, Vol. 2, p 409

    Google Scholar 

  • Sander K (1985b) Experimental egg activation in lower dipterans (Psychoda. Smittia) by low osmolality. Int J Invert Reprod Develop 8:175–183

    Google Scholar 

  • Sander K & Feddersen I (1985) Developmental failure after experimental activation of insect eggs. Int J Invert Reprod Develop 8:219–226

    Google Scholar 

  • Sander K & Lehmann R (1988) Drosophila nurse cells produce a posterior signal required for embryonic segmentation and polarity. Nature 335:68–70

    Article  PubMed  CAS  Google Scholar 

  • Sawa M & Oishi K (1989a) Studies on the sawfly, Athalia rosae (Insecta, Hymenoptera, Tenthredinidae) II. Experimental activation of mature unfertilized eggs. Zool Sci (Tokyo) 6:549–556

    Google Scholar 

  • Sawa M & Oishi K (1989b) Studies on the sawfly, Athalia rosae (Insecta, Hymenoptera, Tenthredinidae) III. Fertilization by sperm injection. Zool Sci (Tokyo) 6:557–563

    Google Scholar 

  • Sawa M & Oishi K (1989c) Delayed sperm injection and fertilization in parthenogenetically activated insect eggs (Athalia rosae. Hymenoptera). Roux’s Arch Dev Biol 198 (in press)

    Google Scholar 

  • Sawa M, Fukunaga A, Naito T, & Oishi K (1989) Studies on the sawfly, Athalia rosae (Insecta, Hymenoptera, Tenthredinidae). I. General biology. Zool Sci (Tokyo) 6:541–547

    Google Scholar 

  • Van der Meer JM (1988) The role of metabolism and calcium in insect eggs: a working hypothesis. Biol Reviews (Cambridge) 63:107–157

    Google Scholar 

  • Van der Meer JM (1990) Control of mitosis and ooplasmic movements in insect eggs. In: Malacinski GM (ed) Cytoplasmic organization systems. McGraw-Hill Publ Comp, New York, p 263

    Google Scholar 

  • Van der Meer JM, Kemner W, Miyamoto DM (1982) Mitotic waves and embryonic pattern formation: No correlation in Callosobruchus (Coleoptera). Roux’s Arch Dev Biol 191:355–365

    Google Scholar 

  • Vinson SB & Jang HS (1987) Activation of Campoletis sonorensis (Hymenoptera: Ichneumonidae) eggs by artificial means. Ann Entomol Soc Am 80:486–489

    Google Scholar 

  • Virkki N, Bruck T & Denton A (1987) Brief notes of the cytology of neotropical coleoptera. 5. Storage and activation of large sperm cells in male Alticinae. J Agric Univ Puerto Rico. 71:415–417

    Google Scholar 

  • Went DF (1982) Egg activation and parthenogenetic reproduction in insects. Biol Rev (Cambridge) 57:319–344

    Google Scholar 

  • Wolf R (1980) Migration and division of cleavage nuclei in the gall midge, Wachtliella persicariae. II. Origin and ultrastructure of the migration cytaster. Roux’s Arch Dev Biol 188:65–73

    Google Scholar 

  • Wolf R (1985) Migration and division of cleavage nuclei in the gall midge, Wachtliella persicariae. III. Pattern of anaphase-triggering waves altered by temperature gradients and local gas exchange. Roux’s Arch Dev Biol 194:257–270

    Google Scholar 

  • Wyman R (1979) The temporal stability of the Drosophila oocyte. J Embryol exp Morph 50:137–144

    PubMed  CAS  Google Scholar 

  • Zarani FE & Margaritis LH (1986) The eggshell of Drosophila melanogaster. V. Structure and morphogenesis of the micropylar apparatus. Can J Zool 64:2509–2519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sander, K. (1990). The Insect Oocyte: Fertilization, Activation and Cytoplasmic Dynamics. In: Dale, B. (eds) Mechanism of Fertilization: Plants to Humans. NATO ASI Series, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83965-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83965-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83967-2

  • Online ISBN: 978-3-642-83965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics