Satellite DNA

  • L. Bachmann
  • M. Raab
  • J. Schibel
  • D. Sperlich
Part of the NATO ASI Series book series (volume 57)

Abstract

The genomes of eukaryotic organisms are regularly composed of three different classes of DNA sequences: Single copy, middle or moderately repetitive and highly repetitive DNA sequences, with copy numbers per genome of 1 to 10, 10 to 1000, and 1000 to 1000000 respectively. The highly repetitive sequences can be separated easily from the rest of the genomic DNA by density centrifugation if it happens that they deviate in base composition from the genome average. This deviation causes a higher (GC-rich) or lower (AT-rich) buoyant density and gives rise to the formation of discrete “satellite bands” of DNA in usual CsCl gradients at different densities than the “main band” DNA. Yet, conspicious departure in base composition is not observed in all families of repetitive sequences so that the repetitive DNA remains hidden in the bulk of the main band DNA as a so called “cryptic satellite”.

Keywords

Manifold Europe Agarose Bromide Polyacrylamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold ML, Appels R, Shaw DD (1986) The heterochromatin of grasshoppers from Caledia captiva species complex I. Mol Biol Evol 3: 29–43PubMedGoogle Scholar
  2. Bachmann L, Raab M, Sperlich D (1989) Satellite DNA and speciation: A species specific satellite DNA of Drosophila guanche. Z zool Syst Evolut-forsch 27: 84–93CrossRefGoogle Scholar
  3. Bachmann L, Raab M, Sperlich D (1989) Satellite DNA and speciation: A species specific satellite DNA of Drosophila guanche. Z zool Syst Evolut-forsch 27: 84–93CrossRefGoogle Scholar
  4. Beridze T (1986) Satellite DNA. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  5. Doolittle G, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature London 284: 601–603PubMedCrossRefGoogle Scholar
  6. Duke BOL, Anderson J (1972) A comparison of the lesions produced in the cornea of the rabbit eye by microfilariae of the forest and Sudan savanna strains of Onchocerca volvulus from Cameroon I. The clinical picture. Tropenmed Parasit 23: 354–368Google Scholar
  7. Duke BOL, Lewis DJ, Moore PJ (1966) Onchocerca Simulium complexes I. Transmission of forest and Sudan savanna strains of Onchocerca volvulus, from Cameroon, by Simulium damnosum from various West African bioclimatic zones. Ann trop Med Parasitol 60: 318–336Google Scholar
  8. Dunbar AW (1966) Four sibling species included in Simulium damnosum Theobald from Uganda. Nature London 209: 597–599CrossRefGoogle Scholar
  9. Gall JG, Atherton DD (1974) Satellite DNA sequences in Drosophila virilis. J Mol Biol 85: 633–664CrossRefGoogle Scholar
  10. Harnett W, Chambers AE, Renz A, Parkhouse RME (1989) An oligonucleotide probe specific for Onchocerca volvulus. Mol Biochem Parasit 35: 119–125CrossRefGoogle Scholar
  11. Hörz W, Altenburger W (1981) Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res 9: 683–696PubMedCrossRefGoogle Scholar
  12. Hsieh T, Brutlag DL (1979) Sequence and sequence variation within the 1.688 satellite DNA of Drosophila melanogaster. J Mol Biol 135: 465–481CrossRefGoogle Scholar
  13. Krimbas CB, Loukas M (1984) Evolution of the obscura group Drosophila species. I. Salivary chromosomes and quantitative characters in D. subobscura and two closely related species. Heredity 53: 469–482CrossRefGoogle Scholar
  14. Lam BS, Carroll D (1983) Tandemly repeated DNA sequences from Xenopus levis L Studies on sequence organization and variation in satellite I DNA. J Mol Biol 165: 567–585PubMedCrossRefGoogle Scholar
  15. Lohe AR, Brutlag DL (1987) Identical satellite DNA sequences in sibling species of Drosophila. J Mol Biol 194: 171–179CrossRefGoogle Scholar
  16. Meredith SEO, Unnasch TR, Karam M, Piessens WF, Wirth DF (1989) Cloning and characterization of an Onchocerca volvulus specific DNA sequence. Mol Biochem Parasit 36: 1–10CrossRefGoogle Scholar
  17. Miklos GLG (1985) Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. In: Maclntyre RJ (ed) Molecular evolutionary genetics. Plenum Press New York London, p 241Google Scholar
  18. Murray KA, Post RJ, Crampton JM, McCall PJ, Kouyate B (1988) Cloning and characterization of a species-specific repetitive DNA sequence from Onchocerca armillata. Mol Biochem Parasit 30: 209–216CrossRefGoogle Scholar
  19. Ohta T (1983) Theoretical study on the accumulation of selfish DNA. Genet Res 41: 1–15PubMedCrossRefGoogle Scholar
  20. Orgel LE, Crick FHC (1980) Selfish DNA: The ultimate parasite. Nature London 284: 604–607PubMedCrossRefGoogle Scholar
  21. Pech M, Igo-Kemenes T, Zachau HG (1979) Nucleotide sequences of a highly repetitive component of rat DNA. Nucleic Acids Res 7: 417–432PubMedCrossRefGoogle Scholar
  22. Schmidt ER (1984) Clustered and interspersed repetitive DNA sequence family of Chironomus. J Mol Biol 178: 1–15CrossRefGoogle Scholar
  23. Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76: 67–112PubMedCrossRefGoogle Scholar
  24. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossing over. Science Wash DC 191: 528–535CrossRefGoogle Scholar
  25. Stephan W (1989) Tandem repetitive noncoding DNA: Forms and forces. Mol Biol Evol 6: 198–212PubMedGoogle Scholar
  26. Verma RS (1988) Heterochromatin. Cambridge Univ Press Cambridge New York New Rochelle Melbourne SydneyGoogle Scholar
  27. Wahl G, Ekale D, Enyong P, Renz A (1990) The development of Onchocerca dukei and O. ochengi microfilariae to infective stage larvae in Simulium damnosum s.l. and in members of the S. medusaeforme group, following intra-thoracic injection. Ann trop Med Parasit: submittedGoogle Scholar
  28. Wlaschek M, Angulewitsch A, Bünemann H (1988) Structure and function of Y chromosomal DNA I. Sequence organization and localization of four families of repetitive DNA on the Y chromosome of Drosophila hydei. Chromosoma 96: 145–158PubMedCrossRefGoogle Scholar
  29. Wu Z, Murphy C, Gall JG (1986) A transcribed satellite DNA from the bullfrog Rana catesbeiana. Chromosoma 93: 291–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • L. Bachmann
    • 1
  • M. Raab
    • 1
  • J. Schibel
    • 1
  • D. Sperlich
    • 1
  1. 1.Department of Population GeneticsUniversity of TuebingenTuebingenGermany

Personalised recommendations