Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 57))

  • 1039 Accesses

Abstract

Evolution by natural selection takes place through the success and failure of individuals to survive and reproduce. It thus involves the lowest level of taxonomic structure — the individual. To understand many of the processes of evolution at higher taxonomic levels, it is necessary to study and understand the behaviour of populations and individuals in nature and the laboratory: to record their survival and measure their fitness. This study of the interaction between individual fitness and genetic variation lies within the field of population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F.J. 1975 Genetic differentiation during the speciation process. in Evolutionary Biology vol 8 (eds T. Dobzhansky, M.K.Hecht & W.C.Steere) Plenum, New York.

    Google Scholar 

  • Barrowclough, G.F. 1980. Gene flow, effective population sizes and genetic variance components in birds. Evolution, 34, 789–798.

    Article  Google Scholar 

  • Brookfield, J.F.Y. 1989 Analysis of DNA fingerprinting data in cases of disputed paternity. J. Maths Appl. Med. & Biot, 6, 111–131.

    Article  CAS  Google Scholar 

  • Burke, T. 1989 DNA fingerprinting and other methods for the study of mating success. Trends in Ecol. & Evo1., 4, 139–144.

    Article  CAS  Google Scholar 

  • Carter, R.E., J.H.Wetton & D.T.Parkin 1989 Improved genetic fingerprinting using RNA probes. Nucl. Acids Res 17, 5867.

    Article  PubMed  CAS  Google Scholar 

  • Futuyma, D. 1979. Evolutionary Biology. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Harris, H. 1966. Enzyme polymorphisms in man. Proc. Roy. Soc. Ser. b, 164, 298–310.

    Article  CAS  Google Scholar 

  • Jeffreys, A.J., J.F.Y.Brookfield & R. Semeonoff 1985a Positive identification in an immigration test-case using human DNA fingerprints. Nature, 317, 818–819.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., V. Wilson & S.L.Thein 1985b Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., V. Wilson & S.L.Thein 1985c. Individual-specific ‘fingerprint’ of human DNA. Nature, 316, 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin, R.C. & J.L.Hubby 1966. A molecular approach to the study of genic heterozygosity in natural populations. II Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 54, 595–609.

    CAS  Google Scholar 

  • Lewontin, R.C. 1974 The genetic basis of evolutionary change. Columbia U.P., New York.

    Google Scholar 

  • Lynch, M. 1988 Estimation of relatedness by DNA fingerprinting. Mol. BioL EvoL, 5, 584–599.

    PubMed  CAS  Google Scholar 

  • Mayr, E. 1963 Animal species and evolution. Harvard U P, Cambridge, Mass.

    Google Scholar 

  • Muller, H.J. 1950. Our laod of mutations. Am. J. Hum. Genet., 2, 111–176.

    PubMed  CAS  Google Scholar 

  • Nei, M. 1975 Molecular population genetics and evolution. Elsevier, New York.

    Google Scholar 

  • Nevo, E. 1978 Genetic variation in natural populations: patterns and theory. Theoret. Pop. Biol., 13, 121–177.

    Article  CAS  Google Scholar 

  • Stebbins, G.L. 1974 Flowering plants: evolution above the species level. Harvard U P, Cambridge, Mass.

    Google Scholar 

  • Wallace, B. 1958. The role of heterozygosity in Drosophila populations. Proc. Int. Cong. Genet. 10th, 1, 408–419.

    Google Scholar 

  • Wetton, J.H., R.E.Carter, D.T.Parkin & D.Walters 1987 Demographic study of a wild House Sparrow population by DNA fingerprinting. Nature, 327, 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Wetton, J.H. & D.T Parkin 1989 DNA fingerprinting of house sparrows. in Electrophoretic studies on agricultural pests (eds H.D.Loxdale & J.den Hollander) Syst. Ass. Special Vol., Oxford U.P.

    Google Scholar 

  • Wong, Z., V.Wilson, A.J. Jeffreys & S.L.Thein 1986 Cloning a selected fragment from a human DNA ‘fingerprint’: Isolation of an extremely polymorphic minisatellite. Nucl. Acids Res., 14, 4605–4616.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parkin, D.T., Wetton, J.H. (1991). DNA Fingerprinting. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83962-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83962-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83964-1

  • Online ISBN: 978-3-642-83962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics